A306315 Number of binary words of length n such that the difference between the number of 1's and the number of 0's is in the interval [-2,3] for every prefix and in the interval [-3,2] for every suffix.
1, 2, 4, 6, 12, 18, 35, 54, 103, 162, 307, 486, 926, 1458, 2823, 4374, 8688, 13122, 26962, 39366, 84285, 118098, 265147, 354294, 838625, 1062882, 2664636, 3188646, 8499263, 9565938, 27197074, 28697814, 87261592, 86093442, 280596321, 258280326, 903916589
Offset: 0
Examples
a(3) = 6: 001, 010, 011, 100, 101, 110. a(4) = 12: 0010, 0011, 0100, 0101, 0110, 1000, 1001, 1010, 1011, 1100, 1101, 1110. a(5) = 18: 00101, 00110, 01001, 01010, 01011, 01100, 01101, 01110, 10001, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11100. a(6) = 35: 001010, 001011, 001100, 001101, 001110, 010010, 010011, 010100, 010101, 010110, 011000, 011001, 011010, 011100, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101010, 101011, 101100, 101101, 101110, 110001, 110010, 110011, 110100, 110101, 110110, 111000, 111001, 111010.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3911
- Index entries for linear recurrences with constant coefficients, signature (0,11,0,-46,0,90,0,-81,0,28,0,-3)
Programs
-
Mathematica
LinearRecurrence[{0,11,0,-46,0,90,0,-81,0,28,0,-3},{1,2,4,6,12,18,35,54,103,162,307,486},40] (* Harvey P. Dale, Sep 17 2019 *)
Formula
G.f.: -(2*x^11-18*x^9+9*x^8+48*x^7+3*x^6-44*x^5-14*x^4+16*x^3+7*x^2-2*x-1) / ((3*x^2-1) *(x^2+x-1) *(x^2-x-1) *(x^3-2*x^2-x+1) *(x^3+2*x^2-x-1)).