A306334 a(n) is the number of different linear hydrocarbon molecules with n carbon atoms.
1, 3, 4, 10, 18, 42, 84, 192, 409, 926, 2030, 4577, 10171, 22889, 51176, 115070, 257987, 579868, 1301664, 2925209, 6569992, 14763529, 33166848, 74527233, 167446566, 376253517, 845401158, 1899609267, 4268309531, 9590827171, 21550227328, 48422972296, 108805058758
Offset: 1
Examples
For n=1, there is one possibility: CH4. For n=2, there are 3 solutions: CHCH, CH3CH3, CH2CH2. For n=3, there are 4 solutions: CHCCH3, CH2CCH2, CH3CHCH2, CH3CH2CH3. For n=6, there are 42 solutions: CH3CH2CHCHCCH, CH3CH2CHCHCH2CH3, CH2CHCCCHCH2, CH2CHCHCHCH2CH3, CH2CHCHCHCCH, CH2CCCCHCH3, CHCCCCHCH2, CH3CHCHCHCHCH3, CHCCHCHCCH, CH2CCCCCH2, CH3CCCH2CH2CH3, CH3CCCCCH3, CH3CH2CH2CH2CH2CH3, CH2CHCHCHCHCH2, CH2CCHCH2CHCH2, CH3CHCCCHCH3, CHCCH2CH2CH2CH3, CHCCH2CH2CCH, CH3CCCH2CHCH2, CH2CCCHCH2CH3, CH2CCCHCCH, CHCCH2CCCH3, CHCCH2CHCCH2, CH3CH2CH2CH2CHCH2, CH2CHCHCCHCH3, CH3CH2CCCH2CH3, CH2CHCH2CH2CHCH2, CH2CHCHCCCH2, CH3CHCCHCH2CH3, CH3CH2CH2CHCHCH3, CH3CHCCHCCH, CHCCH2CH2CHCH2, CH3CHCHCCCH3, CH2CCHCCCH3, CH3CHCHCHCCH2, CHCCCCH2CH3, CH2CHCH2CHCHCH3, CH2CCHCHCCH2, CHCCCCCH, CH2CCHCH2CH2CH3, CH3CH2CCCHCH2, CHCCH2CHCHCH3.
Links
- Vincent Champain, Table of n, a(n) for n = 1..1000
- L. Edson Jeffery, Danzer matrices (unit-primitive matrices). [It contains a discussion of a generalization of the matrix M that appears in the formula for a(n). See basis D_7.]
- Wikipedia, Cayley-Hamilton theorem.
- R. Witula, D. Slota, and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq. 9 (2006), Article 06.4.3. [See Corollary 2.4 and the discussion about the polynomial p_7(x) and its roots. This essentially proves that a(n) can be expressed in terms of exp(I*2*Pi/7).]
- Index entries for linear recurrences with constant coefficients, signature (2,3,-5,-1,0,-2,3,1,-1).
Programs
-
Maple
with(LinearAlgebra): M := Matrix([[0, 0, 1], [0, 1, 1], [1, 1, 1]]): X := proc(n) MatrixPower(M, n - 2): end proc: Y := proc(n) MatrixPower(M, floor(1/2*n) - 2): end proc: a := proc(n) `if`(n < 4, [1,3,4][n], 1/2*(add(add(X(n)[i, j], i = 1..3), j = 1..3) + add(add(Y(n)[i, j]*min(j, 3 - (n mod 2)), i = 1..3), j = 1..3))): end proc: seq(a(n), n=1..40); # Petros Hadjicostas, Nov 17 2019
-
Mathematica
M = {{0, 0, 1}, {0, 1, 1}, {1, 1, 1}}; X[n_] := MatrixPower[M, n - 2]; Y[n_] := MatrixPower[M, Floor[1/2*n] - 2]; a[n_] := If[n < 4, {1, 3, 4}[[n]], 1/2*(Sum[Sum[X[n][[i, j]], {i, 1, 3}], {j, 1, 3}] + Sum[Sum[Y[n][[i, j]]*Min[j, 3 - Mod[n, 2]], {i, 1, 3}], {j, 1, 3}])]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 16 2023, after Petros Hadjicostas *)
-
Python
from numpy import array as npa from numpy.linalg import matrix_power as npow def F(n): if n<4: return([0,1,3,4][n]) m=npa([[0,0,1],[0,1,1],[1,1,1]],dtype=object) m2=npow(m,n//2-2) return((sum(sum(npow(m,n-2)))+sum(sum(m2[j]*min(j+1,3-(n&1)) for j in range(3))))//2)
Formula
a(n) = (1/2) * (Sum_{i,j = 1..3} X_{ij} + Sum_{i,j = 1..3} Y_{ij} * min(j, 3 - (n&1))), where M = [[0,0,1], [0,1,1], [1,1,1]], X = [X_{ij}: i,j = 1..3] = M^(n-2), and Y = [Y_{ij}: i,j = 1..3] = M^(floor(n/2)-2)) for n >= 1 (with negative powers indicating matrix inverses). [Edited by Petros Hadjicostas, Nov 16 2019]
Conjectures from Vaclav Kotesovec, Feb 12 2019: (Start)
a(n) = 2*a(n-1) + 3*a(n-2) - 5*a(n-3) - a(n-4) - 2*a(n-6) + 3*a(n-7) + a(n-8) - a(n-9), for n >= 10.
G.f.: (1 - x - 2*x^2 - x^4 + 2*x^5 + x^6 - x^7) / ((1 - 2*x - x^2 + x^3)*(1 - 2*x^2 - x^4 + x^6)) - 1. (End) [These conjectures are true. See my comments above. - Petros Hadjicostas, Nov 17 2019]
From Petros Hadjicostas, Nov 17 2019: (Start)
Comments