A306348 Numbers k such that exp(H_k)*log(H_k) <= sigma(k), where H_k is the harmonic number.
1, 2, 3, 4, 6, 12, 24, 60
Offset: 1
Examples
Let b(n) = exp(H_{a(n)})*log(H_{a(n)}). n | a(n) | b(n) | sigma(a(n)) --+------+------------+------------- 1 | 1 | 0 | 1 2 | 2 | 1.817... | 3 3 | 3 | 3.791... | 4 4 | 4 | 5.894... | 7 5 | 6 | 10.384... | 12 6 | 12 | 25.218... | 28 7 | 24 | 57.981... | 60 8 | 60 | 166.296... | 168
Links
- J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, arXiv:math/0008177 [math.NT], 2000-2001; Am. Math. Monthly 109 (#6, 2002), 534-543.
Programs
-
Mathematica
For[k = 1, True, k++, If[Exp[HarmonicNumber[k]] Log[HarmonicNumber[k]] <= DivisorSigma[1, k], Print[k]]] (* Jean-François Alcover, Feb 14 2019 *)
Comments