cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306360 Numbers k such that A101337(k)/k is an integer.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 459, 1634, 8208, 9474, 13598, 48495, 54748, 92727, 93084, 119564, 174961, 306979, 548834, 1741725, 3194922, 4210818, 9800817, 9926315, 12720569, 24678050, 24678051, 88593477, 144688641, 146511208
Offset: 1

Views

Author

Ctibor O. Zizka, Feb 10 2019

Keywords

Comments

A005188 is a subsequence of this sequence.
Sequence is finite. In particular, a(n) < 10^60. If k >= 10^60, then A101337(k) < k. - Chai Wah Wu, Feb 26 2019

Examples

			For k = 1, (1^1)/1 = 1;
for k = 459, (4^3 + 5^3 + 9^3) / 459 = 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], IntegerQ[Total[IntegerDigits[#]^IntegerLength[#]]/#] &] (* Michael De Vlieger, Aug 01 2019 *)
  • PARI
    isok(n) = frac(A101337(n)/n) == 0; \\ Michel Marcus, Feb 11 2019
    
  • PARI
    select( is(n)=!(A101337(n)%n), [0..999]) \\ M. F. Hasler, Nov 17 2019
    
  • Python
    A306360_list, k = [], 1
    while k < 10**9:
        s = str(k)
        l, c = len(s), 0
        for i in range(l):
            c = (c + int(s[i])**l) % k
        if c == 0:
            A306360_list.append(k)
        k += 1 # Chai Wah Wu, Feb 26 2019

Extensions

a(22)-a(37) from Daniel Suteu, Feb 10 2019