A306391 Number of polyphyletic coalescence sequences for 2n lineages, n each in 2 species.
0, 12, 2484, 1557792, 2560572000, 9326330280000, 66250877823900000, 834917902101803520000, 17373747843395915811840000, 564479089176417832085760000000, 27382950623629177584815808000000000, 1912097851374544604017590025267200000000, 186429568131038636125345650494922854400000000
Offset: 1
Keywords
Examples
For n=2, consider two red leaves R1 and R2 and two blue leaves B1 and B2. The a(2)=12 polyphyletic coalescence sequences, separated by semicolons, are (B1,R1), ((B1,R1),B2), (((B1,R1),B2),R2); (B1,R1), ((B1,R1),R2), (((B1,R1),R2),B2); (B1,R2), ((B1,R2),B2), (((B1,R2),B2),R1); (B1,R2), ((B1,R2),R1), (((B1,R2),R1),B2); (B2,R1), ((B2,R1),B1), (((B2,R1),B1),R2); (B2,R1), ((B2,R1),R2), (((B2,R1),R2),B1); (B2,R2), ((B2,R2),B1), (((B2,R2),B1),R1); (B2,R2), ((B2,R2),R1), (((B2,R2),R1),B1); (B1,R1), (B2,R2), ((B1,R1),(B2,R2)); (B1,R2), (B2,R1), ((B1,R2),(B2,R1)); (B2,R1), (B1,R2), ((B2,R1),(B1,R2)); (B2,R2), (B1,R1), ((B2,R2),(B1,R1)).
Links
- N. A. Rosenberg, The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model, Evolution 57 (2003), 1465-1477.
Crossrefs
Programs
-
Mathematica
Table[(1 - (2 n! n!/(2 n)!) (7 n - 5)/((n + 1) (2 n - 1))) (2 n)! (2 n - 1)!/2^(2 n - 1), {n, 1, 30}]
-
PARI
a(n) = (1 - (2*n!*n!/(2*n)!)*(7*n-5)/((n+1)*(2*n-1)))*(2*n)!*(2*n-1)!/2^(2*n-1); \\ Michel Marcus, Feb 12 2019
Formula
a(n) = (1 - (2 n! n!/(2n)!)(7n-5)/((n+1)(2n-1))) (2n)! (2n-1)!/2^(2n-1).
a(n) ~ exp(-4*n)*n^(4*n-1)*(4^n + 3*4^(1+n)*n - 84*sqrt(n*Pi))*Pi/3. - Stefano Spezia, Apr 30 2024
Extensions
a(12)-a(13) from Stefano Spezia, Apr 30 2024
Comments