cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A174590 a(n) = (k-1)/lambda(k), the index of the n-th Carmichael number k.

Original entry on oeis.org

7, 23, 48, 22, 47, 5, 45, 21, 44, 163, 342, 162, 43, 31, 1777, 314, 337, 161, 1753, 70, 2868, 1745, 421, 2487, 1363, 159, 39, 645, 950, 67, 198, 1358, 949, 158, 2303, 134, 305, 1692, 1733, 5731, 2794, 7107, 1732, 345, 1689, 2654, 1671, 1829, 947, 1353, 1557
Offset: 1

Views

Author

Michel Lagneau, Mar 23 2010, Mar 31 2010

Keywords

Comments

The index of a Carmichael number k is i(k) = (k-1)/lambda(k).
Or, i(k) = (k-1)/lcm(p_1-1,p_2-1,...,p_j-1), where k = p_1*p_2*...*p_j. - Thomas Ordowski, Oct 15 2015
For composite k, lambda(k) divides k-1 iff k is a Carmichael number. - Thomas Ordowski, Oct 23 2015

Examples

			a(1)= 7 because A002997(1) = 561, and (561 - 1)/lambda(561) = 560/80 = 7.
		

Crossrefs

Cf. A002322 (the Carmichael lambda function), A002997, A011773, A306414.

Programs

  • Maple
    with(numtheory) : for n from 2 to 2000000 do: if type(n,prime)=false and issqrfree(n)=true then  x:=factorset(n):n1:=nops(x):ii:=0:for j from 1 to n1 do:if irem(n-1, x[j]-1)=0  then ii:=ii+1:else fi:od:if ii=n1 then z:=(n-1)/lambda(n):printf(`%d, `,z):else fi:fi:od:
  • Mathematica
    carNums = Select[Range[561, 3 10^6, 2], CompositeQ[#] && Mod[#, CarmichaelLambda[#]] == 1&];
    a[n_] := (carNums[[n]] - 1)/CarmichaelLambda[carNums[[n]]];
    Array[a, 60] (* Jean-François Alcover, Sep 05 2018 *)
  • PARI
    t(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1;
    for(n=1, 1e7, if(n%2 && !isprime(n) && t(n) && n>1, print1((n-1)/(lcm(znstar(n)[2])), ", "))) \\ Altug Alkan, Oct 15 2015

Formula

a(n) = (A002997(n) - 1) / lambda(A002997(n)).
a(n) = (A002997(n) - 1) / A306414(n). - Jianing Song, Dec 12 2021

Extensions

Edited by Michel Lagneau, Jul 31 2012
Further edits from N. J. A. Sloane, Oct 31 2015

A350084 a(n) = ord(2,A006935(n)/2), where ord(k,m) is the multiplicative order of k modulo m.

Original entry on oeis.org

1, 261, 165, 275, 13425, 1485, 1305, 32085, 825, 3465, 2093, 3135, 495, 495, 261, 847, 9405, 552189, 198561, 261, 579261, 2475, 6237, 166725, 111111, 3393, 3565, 25245, 18585, 4437, 891891, 309455, 37125, 4833, 2301585, 14355, 11781, 3315, 915, 84975, 35259
Offset: 1

Views

Author

Jianing Song, Dec 12 2021

Keywords

Comments

List of ord(2,k) where k ranges over the odd numbers such that 2^(2*k-1) == 1 (mod k).

Examples

			A006935(2) = 161038, so a(2) = ord(2,161038/2) = 261.
A006935(3) = 215326, so a(3) = ord(2,215326/2) = 165.
		

Crossrefs

Programs

  • PARI
    list(lim) = my(v=[],d); forstep(k=1, lim, 2, if((2*k-1)%(d=znorder(Mod(2,k)))==0, v=concat(v,d))); v \\ gives a(n) for A347906(n) <= lim

Formula

a(n) = ord(2,A347906(n)) = (A006935(n) - 1) / A350083(n).

A367320 Carmichael numbers k such that (k-1)/lambda(k) > (m-1)/lambda(m) for all Carmichael numbers m < k, where lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

561, 1105, 1729, 29341, 41041, 63973, 172081, 825265, 852841, 1773289, 5310721, 9890881, 12945745, 18162001, 31146661, 93869665, 133205761, 266003101, 417241045, 496050841, 509033161, 1836304561, 1932608161, 2414829781, 4579461601, 9799928965, 11624584621, 12452890681
Offset: 1

Views

Author

Amiram Eldar, Nov 14 2023

Keywords

Crossrefs

Subsequence of A002997.

Programs

  • Mathematica
    seq[kmax_] := Module[{s = {}, r, rm = 0, lam}, Do[If[CompositeQ[k], lam = CarmichaelLambda[k]; If[Mod[k, lam] == 1, r = (k - 1)/lam; If[r > rm, rm = r; AppendTo[s, k]]]], {k, 9, kmax, 2}]; s]; seq[10^6]
  • PARI
    lista(kmax) = {my(r, rm = 0, lam); forcomposite(k = 4, kmax, if(k % 2, lam = lcm(znstar(k)[2]); if(k % lam == 1, r = (k-1)/lam; if(r > rm, rm = r; print1(k, ", ")))));}
Showing 1-3 of 3 results.