A306427 Least integer m such that there are exactly n quadruples of distinct divisors (d_i, d_j, d_k, d_l) among the divisors of m having the property d_i * d_j - d_k * d_l = 1, for some i, j, k, l.
28, 84, 120, 240, 360, 252, 210, 660, 1008, 1848, 630, 1320, 420, 2310, 840, 4830, 1680, 3360, 5880, 11700, 1980, 4200, 1260, 9660, 3960, 3780, 2520, 6930, 4620, 8190, 6300, 7560, 5040, 18900, 19320, 5460, 23760, 7140, 39600, 15120, 27300, 12600, 59220, 45360
Offset: 1
Keywords
Examples
a(7) = 210 because the divisors of 210 are {1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210} with seven following quadruples (1, 7, 2, 3), (1, 15, 2, 7), (1, 21, 2, 10), (2, 3, 1, 5), (3, 5, 1, 14), (3, 5, 2, 7) and (3, 7, 2, 10).
Programs
-
Maple
with(numtheory):nn:=1000: for n from 1 to nn do: ii:=0:it:=0: for k from 1 to 10^5 while(ii=0) do: d:=divisors(k):n0:=nops(d):it:=0: for a from 1 to n0-1 do: for b from a+1 to n0 do: lst1:={d[a]} union {d[b]}:lst:= d minus lst1:n1:=nops(lst): for i from 1 to n1-1 do: for j from i+1 to n1 do: if d[a]*d[b]-lst[i]*lst[j]=1 then it:=it+1: else fi: od: od: od: od: if it=n then ii:=1:printf (`%d %d \n`,n,k): else fi: od: od:
Comments