A306444 A(n,k) = binomial((2*k+1)*n+2, k*n+1)/((2*k+1)*n+2), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.
1, 1, 1, 1, 2, 1, 1, 5, 7, 1, 1, 14, 66, 30, 1, 1, 42, 715, 1144, 143, 1, 1, 132, 8398, 49742, 22610, 728, 1, 1, 429, 104006, 2340135, 3991995, 482885, 3876, 1, 1, 1430, 1337220, 115997970, 757398510, 347993910, 10855425, 21318, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 1, 2, 5, 14, 42, ... 1, 7, 66, 715, 8398, ... 1, 30, 1144, 49742, 2340135, ... 1, 143, 22610, 3991995, 757398510, ... 1, 728, 482885, 347993910, 267058714626, ... 1, 3876, 10855425, 32018897274, 99543581789652, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..81, flattened
Crossrefs
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Binomial((2*(n-k)+1)*k+2, k*(n-k)+1)/((2*(n-k)+1)*k+2) ))); # G. C. Greubel, Feb 16 2019
-
Magma
[[Binomial((2*(n-k)+1)*k+2, k*(n-k)+1)/((2*(n-k)+1)*k+2): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 16 2019
-
Mathematica
A[n_, k_]:= Binomial[(2*k+1)*n+2, k*n+1]/((2*k+1)*n+2); Table[A[k, n-k], {n,0,12}, {k,0,n}] (* G. C. Greubel, Feb 16 2019 *)
-
PARI
{A(n,k) = binomial((2*k+1)*n+2, k*n+1)/((2*k+1)*n+2)}; for(n=0,12, for(k=0,n, print1(A(k,n-k), ", "))) \\ G. C. Greubel, Feb 16 2019
-
Sage
[[binomial((2*(n-k)+1)*k+2, k*(n-k)+1)/((2*(n-k)+1)*k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 16 2019