cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306444 A(n,k) = binomial((2*k+1)*n+2, k*n+1)/((2*k+1)*n+2), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 7, 1, 1, 14, 66, 30, 1, 1, 42, 715, 1144, 143, 1, 1, 132, 8398, 49742, 22610, 728, 1, 1, 429, 104006, 2340135, 3991995, 482885, 3876, 1, 1, 1430, 1337220, 115997970, 757398510, 347993910, 10855425, 21318, 1
Offset: 0

Views

Author

Seiichi Manyama, Feb 15 2019

Keywords

Examples

			Square array begins:
   1,    1,        1,           1,              1, ...
   1,    2,        5,          14,             42, ...
   1,    7,       66,         715,           8398, ...
   1,   30,     1144,       49742,        2340135, ...
   1,  143,    22610,     3991995,      757398510, ...
   1,  728,   482885,   347993910,   267058714626, ...
   1, 3876, 10855425, 32018897274, 99543581789652, ...
		

Crossrefs

Columns 0-1 give A000012, A006013.
Rows 0-5 give A000012, A000108(n+1), A065097(n+1), A265101, A265102, A265103.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial((2*(n-k)+1)*k+2, k*(n-k)+1)/((2*(n-k)+1)*k+2) ))); # G. C. Greubel, Feb 16 2019
  • Magma
    [[Binomial((2*(n-k)+1)*k+2, k*(n-k)+1)/((2*(n-k)+1)*k+2): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 16 2019
    
  • Mathematica
    A[n_, k_]:= Binomial[(2*k+1)*n+2, k*n+1]/((2*k+1)*n+2); Table[A[k, n-k], {n,0,12}, {k,0,n}] (* G. C. Greubel, Feb 16 2019 *)
  • PARI
    {A(n,k) = binomial((2*k+1)*n+2, k*n+1)/((2*k+1)*n+2)};
    for(n=0,12, for(k=0,n, print1(A(k,n-k), ", "))) \\ G. C. Greubel, Feb 16 2019
    
  • Sage
    [[binomial((2*(n-k)+1)*k+2, k*(n-k)+1)/((2*(n-k)+1)*k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 16 2019