A306447 Number of (undirected) Hamiltonian cycles in the n-antiprism graph.
3, 9, 16, 29, 56, 110, 225, 469, 991, 2110, 4511, 9666, 20736, 44511, 95575, 205253, 440828, 946817, 2033628, 4367986, 9381949, 20151433, 43283195, 92967882, 199685571, 428904390, 921243268, 1978737467, 4250128235, 9128846273, 19607840040, 42115660645
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Antiprism Graph
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-2,0,1).
Programs
-
Mathematica
LinearRecurrence[{3,-1,-2,0,1},{3,9,16,29,56},40] (* Harvey P. Dale, Aug 06 2020 *)
-
PARI
Vec(x*(3 - 8*x^2 - 4*x^3 + 3*x^4) / ((1 - x)^2*(1 - x - 2*x^2 - x^3)) + O(x^35)) \\ Colin Barker, Jul 12 2020
Formula
a(n) = A124353(n)/2.
From Colin Barker, Jul 12 2020: (Start)
G.f.: x*(3 - 8*x^2 - 4*x^3 + 3*x^4) / ((1 - x)^2*(1 - x - 2*x^2 - x^3)).
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) + a(n-5) for n>5.
(End)
Comments