A306457 The permanent of an n X n Toeplitz matrix M(n) whose first row consists of successive prime numbers prime(1), ..., prime(n) and whose first column consists of prime(1), prime(n + 1), ..., prime(2*n - 1).
1, 2, 19, 546, 40851, 4747510, 986799301, 292666754602, 135134321711681, 80312872924339660, 55242523096584443271, 52058868505260739019880, 55579419798019716586180451, 72402676504369062268839297084, 120521257466525185305708420453019, 234000358527930078723939842673115488
Offset: 0
Keywords
Examples
For n = 1 the matrix M(1) is 2 with permanent a(1) = 2. For n = 2 the matrix M(2) is 2, 3 5, 2 with permanent a(2) = 19. For n = 3 the matrix M(3) is 2, 3, 5 7, 2, 3 11, 7, 2 with permanent a(3) = 546.
Links
- Stefano Spezia, Table of n, a(n) for n = 0..35
- Wikipedia, Toeplitz Matrix
Programs
-
Maple
f:= proc(n) uses LinearAlgebra; `if`(n=0, 1, Permanent(ToeplitzMatrix([seq(ithprime(i), i=2*n-1..n+1, -1), seq(ithprime(i), i=1..n)]))) end proc: map(f, [$0..15]);
-
Mathematica
p[i_]:=Prime[i];a[n_]:=If[n==0,1,Permanent[ToeplitzMatrix[Join[{p[1]},Array[p,n-1,{n+1,2*n-1}]],Array[p,n]]]];Array[a,15,0]
-
PARI
tm(n) = {my(m = matrix(n, n, i, j, if (i==1, prime(j), if (j==1, prime(n+i-1))))); for (i=2, n, for (j=2, n, m[i,j] = m[i-1, j-1];);); m;} a(n) = matpermanent(tm(n)); \\ Michel Marcus, Mar 16 2019
Extensions
a(0) = 1 prepended by Stefano Spezia, Dec 06 2019
Comments