A306474 Composite numbers that are anagrams of the concatenation of their prime factors.
735, 1255, 3792, 7236, 11913, 12955, 13175, 17276, 17482, 19075, 19276, 23535, 25105, 32104, 34112, 37359, 42175, 100255, 101299, 104392, 105295, 107329, 117067, 117873, 121325, 121904, 121932, 123544, 123678, 124483, 127417, 129595, 131832, 132565, 139925
Offset: 1
Examples
3792 is in the sequence because the concatenation of the prime distinct divisors {2, 3, 79} is 2379, anagram of 3792.
Links
- Robert Israel, Table of n, a(n) for n = 1..500
Programs
-
Maple
with(numtheory): for n from 1 to 140000 do: if type(n,prime)=false then x:=factorset(n):n1:=nops(x): s:=0:s0:=0: for i from n1 by -1 to 1 do: a:=x[i]:b:=length(a):s:=s+a*10^s0:s0:=s0+b: od: if sort(convert(n, base, 10)) = sort(convert(s, base, 10)) then printf(`%d, `, n): else fi:fi: od:
-
Mathematica
Select[Range[2,140000],If [!PrimeQ[#],Sort@IntegerDigits@#==Sort[Join@@IntegerDigits[First/@FactorInteger[#]]]]&]
Comments