cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306485 Expansion of Product_{k>=1} 1/(1 - Catalan(k)*x^k), where Catalan = A000108.

Original entry on oeis.org

1, 1, 3, 8, 26, 78, 271, 874, 3096, 10537, 37884, 132282, 484369, 1723568, 6362479, 23042165, 85706354, 313629597, 1175860079, 4340963778, 16355209663, 60882536222, 230370880224, 862533878347, 3278709952956, 12337333292318, 47042968508785, 177882993705004, 680221802560835, 2581438941995517
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2019

Keywords

Crossrefs

Programs

  • Maple
    C:= proc(n) option remember; binomial(n+n, n)/(n+1) end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1)+C(i)*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax = 29; CoefficientList[Series[Product[1/(1 - CatalanNumber[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[Exp[Sum[Sum[CatalanNumber[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d CatalanNumber[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} Catalan(j)^k*x^(j*k)/k).
a(n) ~ c * 4^n / (sqrt(Pi)*n^(3/2)), where c = Product_{k>=1} 1/(1 - Catalan(k) / 4^k) = 2.868839868502632... - Vaclav Kotesovec, Feb 23 2019