cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306486 Number of squares in the interval [e^(n-1), e^n).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 36, 58, 96, 159, 262, 431, 712, 1172, 1934, 3189, 5256, 8667, 14289, 23559, 38841, 64039, 105583, 174076, 287003, 473188, 780155, 1286258, 2120681, 3496412, 5764609, 9504233, 15669832, 25835185, 42595018, 70227313, 115785266
Offset: 0

Views

Author

Alexei Kourbatov, Feb 18 2019

Keywords

Comments

The lower endpoint e^(n-1) is included; the upper endpoint is not included. The terms a(0) to a(8) coincide with the Fibonacci numbers.

Examples

			Between exp(2) and exp(3) there are two squares, namely, 9 and 16; therefore, a(3)=2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> f(n)-f(n-1))(i-> ceil(exp(i/2))):
    seq(a(n), n=0..44);  # Alois P. Heinz, Feb 18 2019
  • PARI
    a(n)=ceil(sqrt(exp(n)))-ceil(sqrt(exp(n-1)));
    for(n=0,50,print1(a(n)", "))

Formula

a(n) = ceiling(sqrt(exp(n))) - ceiling(sqrt(exp(n-1))).
From Alois P. Heinz, Feb 19 2019: (Start)
Lim_{n->oo} a(n+1)/a(n) = sqrt(e) = 1.64872127... = A019774.
a(n) = A005181(n+1) - A005181(n). (End)
a(n) = (1-1/sqrt(e))*e^(n/2)+O(1) ~ 0.39346934...*e^(n/2) ~ A290506*e^(n/2). - Alexei Kourbatov, Feb 20 2019