A306487 Poulet numbers which are not super-Poulet numbers.
561, 645, 1105, 1729, 1905, 2465, 2821, 4371, 6601, 8481, 8911, 10585, 11305, 12801, 13741, 13981, 15841, 16705, 18705, 23001, 25761, 29341, 30121, 30889, 33153, 34945, 39865, 41041, 41665, 46657, 52633, 55245, 57421, 62745, 63973, 68101, 72885, 74665, 75361
Offset: 1
Keywords
Examples
561 is in the sequence because 2^561 % 561 == 2 but 33|561 and 2^33 % 33 = 8 <> 2. - _David A. Corneth_, Feb 28 2019
References
- W. Sierpinski, Elementary Theory of Numbers, ed. A. Schinzel, North-Holland Mathematical Library (2nd ed.), Amsterdam: North Holland, 1988, Chapter V, p. 234, Exercise 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Poulet Number
- Eric Weisstein's World of Mathematics, Super-Poulet Numbers
- Wikipedia, Super-Poulet number
Crossrefs
Programs
-
Mathematica
Select[Select[Range[3, 100000, 2], !PrimeQ[ # ] && PowerMod[2, (# - 1), # ] == 1 &], Union[PowerMod[2, Rest[Divisors[#]], #]] != {2}& ]
-
PARI
is_A001567(n) = {Mod(2, n)^(n-1)==1 && !isprime(n) && n>1}; \\ From A001567 by M. F. Hasler is_A050217(n) = if(isprime(n), 0, fordiv(n, d, if(Mod(2, d)^d!=2, return(0))); (n>1)); \\ After Charles R Greathouse IV's Aug 27 2016 PARI-program in A050217. is_A306487(n) = (is_A001567(n) && !is_A050217(n)); \\ (Probably could be reduced to a simpler program). - Antti Karttunen, Feb 28 2019
-
PARI
is(n) = {if(isprime(n) || n < 2 || n%2 == 0, return(0)); if(Mod(2, n)^n!=2, return(0) , d = divisors(n); for(i = 1, #d-1, if(Mod(2, d[i])^d[i]!=2, return(1) ) ) ); 0 } \\ David A. Corneth, Feb 28 2019
Comments