cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306489 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of 1/(1 - Sum_{d|k} x^d).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 5, 1, 1, 1, 1, 3, 3, 8, 1, 1, 1, 2, 1, 6, 4, 13, 1, 1, 1, 1, 4, 1, 10, 6, 21, 1, 1, 1, 2, 1, 7, 2, 18, 9, 34, 1, 1, 1, 1, 3, 1, 13, 3, 31, 13, 55, 1, 1, 1, 2, 2, 6, 1, 25, 4, 55, 19, 89, 1, 1, 1, 1, 3, 3, 10, 1, 46, 5, 96, 28, 144, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 19 2019

Keywords

Comments

A(n,k) is the number of compositions (ordered partitions) of n into divisors of k.

Examples

			Square array begins:
  1,  1,  1,   1,  1,   1,  ...
  1,  1,  1,   1,  1,   1,  ...
  1,  2,  1,   2,  1,   2,  ...
  1,  3,  2,   3,  1,   4,  ...
  1,  5,  3,   6,  1,   7,  ...
  1,  8,  4,  10,  2,  13,  ...
		

Crossrefs

Columns k=1..7 give A000012, A000045 (for n > 0), A000930, A060945, A003520, A079958, A005709.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 - Sum[x^d, {d, Divisors[k]}]), {x, 0, n}]][i - n + 1], {i, 0, 12}, {n, 0, i}] // Flatten

Formula

G.f. of column k: 1/(1 - Sum_{d|k} x^d).