A306506 Number T(n,k) of permutations p of [n] having at least one index i with |p(i)-i| = k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
1, 1, 1, 4, 4, 3, 15, 19, 15, 10, 76, 99, 86, 67, 42, 455, 603, 544, 455, 358, 216, 3186, 4248, 3934, 3486, 2921, 2250, 1320, 25487, 34115, 32079, 29296, 25487, 21514, 16296, 9360, 229384, 307875, 292509, 272064, 245806, 214551, 179058, 133800, 75600
Offset: 1
Examples
The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have absolute displacement sets {|p(i)-i|, i=1..3}: {0}, {0,1}, {0,1}, {1,2}, {1,2}, {0,2}, respectively. Number 0 occurs four times, 1 occurs four times, and 2 occurs thrice. So row n=3 is [4, 4, 3]. Triangle T(n,k) begins: 1; 1, 1; 4, 4, 3; 15, 19, 15, 10; 76, 99, 86, 67, 42; 455, 603, 544, 455, 358, 216; 3186, 4248, 3934, 3486, 2921, 2250, 1320; 25487, 34115, 32079, 29296, 25487, 21514, 16296, 9360; ...
Links
- Alois P. Heinz, Rows n = 1..35, flattened
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
b:= proc(s, d) option remember; (n-> `if`(n=0, add(x^j, j=d), add(b(s minus {i}, d union {abs(n-i)}), i=s)))(nops(s)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b({$1..n}, {})): seq(T(n), n=1..9); # second Maple program: T:= proc(n, k) option remember; n!-LinearAlgebra[Permanent]( Matrix(n, (i, j)-> `if`(abs(i-j)=k, 0, 1))) end: seq(seq(T(n, k), k=0..n-1), n=1..9);
-
Mathematica
T[n_, k_] := n!-Permanent[Table[If[Abs[i-j]==k, 0, 1], {i, 1, n}, {j, 1, n} ]]; Table[T[n, k], {n, 1, 9}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, May 01 2019, from 2nd Maple program *)
Comments