cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306508 Squarefree numbers that have fully composite idempotent factorizations.

Original entry on oeis.org

210, 462, 570, 1155, 1302, 1330, 1365, 1785, 2210, 2310, 2730, 3003, 3410, 3710, 3990, 4305, 4515, 4758, 4810, 5005, 5187, 5474, 5610, 5642, 6006, 6105, 6118, 6270, 6510, 6622, 6630, 7410, 7770, 8265, 8385, 8463, 8645, 9282, 9471, 9870, 10010, 10101, 10230, 10374, 10545, 10582
Offset: 1

Views

Author

Barry Fagin, Feb 20 2019

Keywords

Comments

Fully composite idempotent factorizations are bipartite factorizations n=p*q such that p and q are composite numbers with the property that for any b in Z_n, b^(k(p-1)(q-1)+1) is congruent to b mod n for any integer k >= 0. Idempotent factorizations have the property that p and q generate correctly functioning RSA keys, even if one or both are composite.
2730 has more than one fully composite idempotent factorization (10*273, 21*130). It is the smallest positive integer with that property. 7770 and 8463 are similar.

Examples

			210=10*21, 462=22*21, 570=10*57, 1155=21*55, 1302=6*217, 1330=10*133, 1365=15*91 and 1785=21*85 are the fully composite idempotent factorizations for the first eight terms.
		

Crossrefs

Subsequence of A120944 (composite squarefree numbers).
Subsequence of A306330 (composite squarefree numbers with idempotent factorizations).

Programs

  • PARI
    isokc(p, q, n) = (p != 1) && !isprime(p) && !isprime(q) && (frac((p-1)*(q-1)/lcm(znstar(n)[2])) == 0);
    isok(n) = {if (issquarefree(n) && omega(n) >= 3, my(d = divisors(n)); for (k=1, #d\2, if (isokc(d[k], n/d[k], n), return (1););););} \\ Michel Marcus, Feb 22 2019
  • Python
    for n in range(2,max_n):
        factor_list = numbthy.factor(n)
        numFactors = len(factor_list)
        if numFactors <= 3:
            continue
        if not bsflib.is_composite_and_square_free_with_list(n,factor_list):
            continue
        fciFactorizations = bsflib.fullyCompositeIdempotentFactorizations(n,factor_list)
        numFCIFs = len(fciFactorizations)
        if numFCIPs > 0:
            fcIdempotents += 1
        print(n)