A306510 Numbers k such that twice the number of divisors of k is equal to the number of divisors of the sum of digits of k.
17, 19, 37, 53, 59, 71, 73, 107, 109, 127, 149, 163, 167, 181, 233, 239, 251, 257, 271, 293, 307, 347, 383, 419, 431, 433, 491, 499, 503, 509, 521, 523, 541, 563, 613, 617, 631, 653, 699, 701, 743, 761, 769, 787, 789, 811, 859, 877, 879, 941, 967
Offset: 1
Examples
For k = 19, 2*A000005(19) = A000005(A007953(19)), 2*A000005(19) = A000005(10), thus k = 19 is a member of the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) 2*numtheory:-tau(n) = numtheory:-tau(convert(convert(n,base,10),`+`)) end proc: select(filter, [$1..1000]); # Robert Israel, Jul 28 2020
-
PARI
isok(k) = (k >= 1) && (2*numdiv(k) == numdiv(sumdigits(k, 10))); \\ Daniel Suteu, Feb 20 2019
Comments