cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A306510 Numbers k such that twice the number of divisors of k is equal to the number of divisors of the sum of digits of k.

Original entry on oeis.org

17, 19, 37, 53, 59, 71, 73, 107, 109, 127, 149, 163, 167, 181, 233, 239, 251, 257, 271, 293, 307, 347, 383, 419, 431, 433, 491, 499, 503, 509, 521, 523, 541, 563, 613, 617, 631, 653, 699, 701, 743, 761, 769, 787, 789, 811, 859, 877, 879, 941, 967
Offset: 1

Views

Author

Ctibor O. Zizka, Feb 20 2019

Keywords

Comments

From Robert Israel, Jul 28 2020: (Start)
The first even term is a(2747)=68998.
Includes primes p such that A007953(p) is in A030513. (End)

Examples

			For k = 19, 2*A000005(19) = A000005(A007953(19)), 2*A000005(19) = A000005(10), thus k = 19 is a member of the sequence.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) 2*numtheory:-tau(n) = numtheory:-tau(convert(convert(n,base,10),`+`)) end proc:
    select(filter, [$1..1000]); # Robert Israel, Jul 28 2020
  • PARI
    isok(k) = (k >= 1) && (2*numdiv(k) == numdiv(sumdigits(k, 10))); \\ Daniel Suteu, Feb 20 2019

Formula

2*A000005(k) = A000005(A007953(k)).

A356061 Numbers whose sum of digits is a refactorable number.

Original entry on oeis.org

1, 2, 8, 9, 10, 11, 17, 18, 20, 26, 27, 35, 36, 39, 44, 45, 48, 53, 54, 57, 62, 63, 66, 71, 72, 75, 80, 81, 84, 90, 93, 99, 100, 101, 107, 108, 110, 116, 117, 125, 126, 129, 134, 135, 138, 143, 144, 147, 152, 153, 156, 161, 162, 165, 170, 171, 174, 180, 183, 189, 192, 198, 200
Offset: 1

Views

Author

Ctibor O. Zizka, Aug 10 2022

Keywords

Comments

Also numbers k such that A007953(k) = c * A000005(A007953(k)); c >= 1 is a positive integer. For c = 1 see A356520.

Examples

			k = 17; A007953(17) = 2 * A000005(A007953(17)), thus k = 17 is in the sequence.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local s; s:= convert(convert(n,base,10),`+`); s mod numtheory:-tau(s) = 0 end proc:
    select(filter, [$1..200]); # Robert Israel, Aug 10 2022
  • Mathematica
    refQ[n_] := Divisible[n, DivisorSigma[0,n]]; Select[Range[2000], refQ[Plus @@ IntegerDigits[#]] &] (* Amiram Eldar, Aug 10 2022 *)
  • PARI
    isok(k) = my(s=sumdigits(k)); denominator(s/numdiv(s)) == 1; \\ Michel Marcus, Aug 10 2022
  • Python
    from sympy import divisor_count
    def ok(n): sd = sum(map(int, str(n))); return sd%divisor_count(sd) == 0
    print([k for k in range(1, 200) if ok(k)]) # Michael S. Branicky, Aug 10 2022
    

A356520 Numbers k such that A000005(A007953(k)) = A007953(k).

Original entry on oeis.org

1, 2, 10, 11, 20, 100, 101, 110, 200, 1000, 1001, 1010, 1100, 2000, 10000, 10001, 10010, 10100, 11000, 20000, 100000, 100001, 100010, 100100, 101000, 110000, 200000, 1000000, 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000, 10000000, 10000001
Offset: 1

Views

Author

Ctibor O. Zizka, Aug 10 2022

Keywords

Comments

Union of A011557 and A052216. I.e., numbers with digital sum 1 or 2. - David A. Corneth, Aug 10 2022

Examples

			k = 101; A000005(A007953(101)) = A007953(101) = 2, thus k = 101 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1,10000001], Plus @@ IntegerDigits[#] < 3 &] (* Amiram Eldar, Aug 10 2022 *)
  • PARI
    isok(k) = my(s=sumdigits(k)); numdiv(s) == s; \\ Michel Marcus, Aug 10 2022
    
  • PARI
    is(n) = my(s = sumdigits(n)); s == 1 || s == 2 \\ David A. Corneth, Aug 10 2022
    
  • Python
    from itertools import count, islice
    def agen():
        for i in count(0):
            yield from [10**i] + [10**i + 10**j for j in range(i+1)]
    print(list(islice(agen(), 37))) # Michael S. Branicky, Aug 10 2022
Showing 1-3 of 3 results.