A306526 a(n) = greatest integer N such that (number of primes <= N) >= (number of numbers <= N that contain a zero in base n).
3, 9, 31, 50, 107, 147, 257, 406, 701, 1091, 1731, 2213, 2782, 3434, 4188, 5042, 6001, 7082, 8276, 18543, 21383, 24521, 27932, 46917, 52924, 59437, 88034, 122055, 162060, 208619, 262334, 359458, 471733, 600588, 839889, 1114547, 1481920, 2076185
Offset: 2
Examples
a(2) = 3, since pi(3) = 2 >= 2 = numOfZeroNum_2(3), and pi(k) < numOfZeroNum_2(k) for all k > 3, where numOfZeroNum_2(m) is the number of base-2-zero-containing-numbers <= m and pi(m) = number of primes <= m. The first base-2-zero-containing-numbers are 0 = 0_2, 2 = 10_2, 4 = 100_2, ... a(3) = 9, since pi(9) = 4 >= 4 = numOfZeroNum_3(9), and pi(k) < numOfZeroNum_3(k) for all k > 9, where numOfZeroNum_3(m) is the number of base-3-zero-containing-numbers <= m and pi(m) = number of primes <= m. The first base-3-zero-containing-numbers are 0 = 0_2, 3 = 10_3, 6 = 20_3, 9 = 100_3, 10 = 101_3, 11 = 102_3, 12 = 120_3, ...
Links
- Hieronymus Fischer, Table of n, a(n) for n = 2..100
Programs
-
PARI
lbz(n, b) = my(d = log(b - 1)/log(b)); n + 2 - ((b-1)*(n+1)^d - 1)/(b-2); ubp(n) = n/(log(n) - 4); f(b) = if (b==2, 10, ceil(solve(x=100, 10^100, lbz(x, b) - ubp(x)))); cz(m, n) = vecmin(digits(m, n))==0; getpos(vdiff) = {forstep (k=#vdiff, 1, -1, if (vdiff[k] == 0, return (k)););} a(n) = {my(ub = f(n), vdiff = vector(ub), nbz = 1, pmp = 0); for (m=1, ub, if (cz(m, n), nbz++); if (isprime(m), pmp++); vdiff[m] = nbz - pmp;); getpos(vdiff);} \\ Michel Marcus, Jun 14 2019
Formula
With numOfZeroNum_n(k) [= the number of base-n-zero containing numbers <= k] and pi(k) [= the number of primes <= k] and d := log(n-1)/log(n):
a(n) = max(k | pi(k) >= numOfZeroNum_n(k)). Because of d = d(n) < 1, numOfZeroNum_n(k) = k*(1 + O(k^(d-1)), pi(k) = k/log(k)*(1+o(1)), and pi(3) = 2 >= 2 = numOfZeroNum_n(3) this maximum always exists (for n > 2). The case n = 2 is obvious. See A324160 regarding general formulas for numOfZeroNum_n(k).
Estimation for the n-th term (n > 2):
a(n) < e^alpha*(1 + c1/c2*(1 + sqrt(1 + c2*c3/c1^2)))^(1/(1-d)),
where d := log(n-1)/log(n), alpha := 1.1,
c0 := e^(alpha*(1-d)),
c1 := (n-1)/(n-2) - d*c0,
c2 := (n-1)/(n-2) + (1 - 1/sqrt(n*log(n)))*c0,
c3 := 2*(1-d)*c0.
Also, but less accurate, n > 2,
a(n) < e^alpha*(1 + (1 + sqrt(1 + 4*(n-2)^2/(n*log(n))))/(1 + (n-2)*(2-1/sqrt(n*log(n)))))^((n-1/2)*log(n)).
Asymptotic behavior:
a(n) = O(sqrt(n)*e^sqrt(n*log(n))).
lim sup a(n)/e^(sqrt(n*log(n))+(log(n)+1)/2) = 1, for n --> infinity.
lim inf a(n)/e^(sqrt(n*log(n))+log(log(n))/2+1) = 1, for n --> infinity.
Comments