cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A306506 Number T(n,k) of permutations p of [n] having at least one index i with |p(i)-i| = k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 1, 1, 4, 4, 3, 15, 19, 15, 10, 76, 99, 86, 67, 42, 455, 603, 544, 455, 358, 216, 3186, 4248, 3934, 3486, 2921, 2250, 1320, 25487, 34115, 32079, 29296, 25487, 21514, 16296, 9360, 229384, 307875, 292509, 272064, 245806, 214551, 179058, 133800, 75600
Offset: 1

Views

Author

Alois P. Heinz, Feb 20 2019

Keywords

Comments

T(n,k) is defined for n,k>=0. The triangle contains only the terms with k=n.

Examples

			The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have absolute displacement sets {|p(i)-i|, i=1..3}: {0}, {0,1}, {0,1}, {1,2}, {1,2}, {0,2}, respectively. Number 0 occurs four times, 1 occurs four times, and 2 occurs thrice. So row n=3 is [4, 4, 3].
Triangle T(n,k) begins:
      1;
      1,     1;
      4,     4,     3;
     15,    19,    15,    10;
     76,    99,    86,    67,    42;
    455,   603,   544,   455,   358,   216;
   3186,  4248,  3934,  3486,  2921,  2250,  1320;
  25487, 34115, 32079, 29296, 25487, 21514, 16296, 9360;
  ...
		

Crossrefs

Columns k=0-3 give: A002467, A306511, A306524, A324366.
T(n+2,n+1) gives A007680 (for n>=0).
T(2n,n) gives A306675.

Programs

  • Maple
    b:= proc(s, d) option remember; (n-> `if`(n=0, add(x^j, j=d),
          add(b(s minus {i}, d union {abs(n-i)}), i=s)))(nops(s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b({$1..n}, {})):
    seq(T(n), n=1..9);
    # second Maple program:
    T:= proc(n, k) option remember; n!-LinearAlgebra[Permanent](
          Matrix(n, (i, j)-> `if`(abs(i-j)=k, 0, 1)))
        end:
    seq(seq(T(n, k), k=0..n-1), n=1..9);
  • Mathematica
    T[n_, k_] := n!-Permanent[Table[If[Abs[i-j]==k, 0, 1], {i, 1, n}, {j, 1, n} ]];
    Table[T[n, k], {n, 1, 9}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, May 01 2019, from 2nd Maple program *)

Formula

T(n,k) = n! - A306512(n,k).
T(2n,n) = T(2n,0) = A002467(2n) = (2n)! - A306535(n).

A306512 Number A(n,k) of permutations p of [n] having no index i with |p(i)-i| = k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 9, 1, 1, 2, 3, 5, 44, 1, 1, 2, 6, 9, 21, 265, 1, 1, 2, 6, 14, 34, 117, 1854, 1, 1, 2, 6, 24, 53, 176, 792, 14833, 1, 1, 2, 6, 24, 78, 265, 1106, 6205, 133496, 1, 1, 2, 6, 24, 120, 362, 1554, 8241, 55005, 1334961
Offset: 0

Views

Author

Alois P. Heinz, Feb 20 2019

Keywords

Examples

			A(4,0) = 9: 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321.
A(4,1) = 5: 1234, 1432, 3214, 3412, 4231.
A(4,2) = 9: 1234, 1243, 1324, 2134, 2143, 2341, 4123, 4231, 4321.
Square array A(n,k) begins:
     1,   1,    1,    1,    1,    1,    1,    1, ...
     0,   1,    1,    1,    1,    1,    1,    1, ...
     1,   1,    2,    2,    2,    2,    2,    2, ...
     2,   2,    3,    6,    6,    6,    6,    6, ...
     9,   5,    9,   14,   24,   24,   24,   24, ...
    44,  21,   34,   53,   78,  120,  120,  120, ...
   265, 117,  176,  265,  362,  504,  720,  720, ...
  1854, 792, 1106, 1554, 2119, 2790, 3720, 5040, ...
		

Crossrefs

Columns k=0-3 give: A000166, A078480, A306523, A324365.
A(n+2j,n+j) (j=0..5) give: A000142, A001564, A001688, A023043, A023045, A023047.
A(2n,n) gives A306535.
Cf. A306506.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k>=n, n!, LinearAlgebra[
          Permanent](Matrix(n, (i, j)-> `if`(abs(i-j)=k, 0, 1))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    b:= proc(s, k) option remember; (n-> `if`(n=0, 1, add(
          `if`(abs(i-n)=k, 0, b(s minus {i}, k)), i=s)))(nops(s))
        end:
    A:= (n, k)-> `if`(k>=n, n!, b({$1..n}, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := If[k > n, n!, Permanent[Table[If[Abs[i-j] == k, 0, 1], {i, 1, n}, {j, 1, n}]]]; A[0, 0] = 1;
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 05 2021, from first Maple program *)
    b[s_, k_] := b[s, k] = With[{n = Length[s]}, If[n == 0, 1, Sum[
         If[Abs[i-n] == k, 0, b[s ~Complement~ {i}, k]], {i, s}]]];
    A[n_, k_] := If[k >= n, n!, b[Range@n, k]];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Sep 01 2021, from second Maple program *)

Formula

A(n,k) = n! - A306506(n,k).
A(n,n+i) = n! for i >= 0.

A306675 Number of permutations p of [2n] having at least one index i with |p(i)-i| = n.

Original entry on oeis.org

0, 1, 15, 455, 25487, 2293839, 302786759, 55107190151, 13225725636255, 4047072044694047, 1537887376983737879, 710503968166486900119, 392198190427900768865711, 254928823778135499762712175, 192726190776270437820610404327, 167671785975355280903931051764519
Offset: 0

Views

Author

Alois P. Heinz, Mar 04 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) b(n, k):= `if`(k=0, n!, b(n+1, k-1) -b(n, k-1)) end:
    a:= n-> (2*n)! -b(0, 2*n):
    seq(a(n), n=0..16);
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 0, n!, b[n + 1, k - 1] - b[n, k - 1]];
    a[n_] := (2n)! - b[0, 2n];
    a /@ Range[0, 16] (* Jean-François Alcover, Apr 02 2021, after Alois P. Heinz *)

Formula

a(n) = A306506(2n,n).
a(n) = (2n)! - A306535(n).
Showing 1-3 of 3 results.