A306543 Number T(n,k) of permutations p of [n] such that |p(j)-j| >= k (for all j in [n]); triangle T(n,k), n >= 0, 0 <= k <= floor(n/2), read by rows.
1, 1, 2, 1, 6, 2, 24, 9, 1, 120, 44, 4, 720, 265, 29, 1, 5040, 1854, 206, 8, 40320, 14833, 1708, 112, 1, 362880, 133496, 15702, 1168, 16, 3628800, 1334961, 159737, 13365, 436, 1, 39916800, 14684570, 1780696, 159414, 6984, 32, 479001600, 176214841, 21599745, 2036488, 114124, 1708, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1; 2, 1; 6, 2; 24, 9, 1; 120, 44, 4; 720, 265, 29, 1; 5040, 1854, 206, 8; 40320, 14833, 1708, 112, 1; 362880, 133496, 15702, 1168, 16; 3628800, 1334961, 159737, 13365, 436, 1; 39916800, 14684570, 1780696, 159414, 6984, 32; 479001600, 176214841, 21599745, 2036488, 114124, 1708, 1; ...
Links
- Alois P. Heinz, Rows n = 0..22, flattened
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
T:= proc(n, k) option remember; `if`(n=0, 1, LinearAlgebra[ Permanent](Matrix(n, (i, j)-> `if`(abs(i-j)>=k, 1, 0)))) end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..12);
-
Mathematica
T[n_, k_] := T[n, k] = If[n==0, 1, Permanent[Table[ If[Abs[i-j] >= k, 1, 0], {i, n}, {j, n}]]]; Table[Table[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Mar 26 2021, after Alois P. Heinz *)
Formula
T(n,k) = Sum_{j=k..floor(n/2)} A299789(n,j) for n > 0.