cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306585 Start with n and find the LCM of n and A140635(n), and continue until a number m is reached such that A140635(m) = m.

Original entry on oeis.org

1, 2, 6, 4, 120, 6, 840, 24, 36, 120, 83160, 12, 1081080, 840, 120, 16, 294053760, 36, 5587021440, 60, 840, 83160, 128501493120, 24, 900, 1081080, 7560, 2520, 93163582512000, 120, 2888071057872000, 10080, 83160, 294053760, 840, 36, 106858629141264000, 5587021440, 1081080, 120, 4381203794791824000
Offset: 1

Views

Author

J. Lowell, Feb 25 2019

Keywords

Comments

a(n) = n is a subsequence of minimal numbers A007416, i.e., when A140635(n) = n. It appears that p_n > log_2(sigma_0(a(p_n))) for all primes p_n, and that a(p_n) form an increasing subsequence satisfying a(k) < a(p_n) for all k < p_n. - Hartmut F. W. Hoft, Mar 14 2023

Examples

			a(5) = 120 because:
A140635(5) = 2 and LCM of 5 and 2 is 10,
A140635(10) = 6 and LCM of 10 and 6 is 30,
A140635(30) = 24 and LCM of 30 and 24 is 120,
A140635(120) = 120 so a(5) = 120.
From _Hartmut F. W. Hoft_, Mar 14 2023: (Start)
Table of iteration steps starting at n and ending with fixed point a(n):
    1  ...
    2  ...
    3    6   ...
    4  ...
    5   10    30   120    ...
    6    6   ...
    7   14    42   168    840     ...
    8   24   ...
    9   36   ...
   10   30   120   ...
   11   22    66   264   1320    9240   83160       ...
   12  ...
   13   26    78   312   1560   10920   98280   1081080  ...
   14   42   168   840    ...
   15   30   120   ...
   16  ...
  ... (End)
		

Crossrefs

Programs

  • Mathematica
    (* a005179[ ] based on the function by Vaclav Kotesovec in A005179 *)
    mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[mHartmut F. W. Hoft, Mar 14 2023 *)
  • PARI
    s(n) = my(nd=numdiv(n)); for(k=1, n, if(numdiv(k) == nd, return(k))); \\ A140635
    a(n) = my(m=n, t=s(n)); while(1, m=lcm(m, t); t=s(m); if(m==t, return(m))); \\ Daniel Suteu, Feb 25 2019

Extensions

a(13)-a(37) from Rémy Sigrist, Feb 25 2019
Terms a(38) and beyond from Hartmut F. W. Hoft, Mar 14 2023