A306593 Least number k such that the determinant of the circulant matrix formed by its decimal digits is equal to n.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 334, 65, 42, 76, 455, 41, 40, 98, 123, 667, 64, 52, 778, 788, 51, 50, 899, 63, 86, 7787, 2025885, 8788, 62, 74, 46996, 61, 60, 66898, 67997, 85, 73, 78998, 88899, 88999, 335, 72, 4579975, 878888, 71, 70, 10243, 5354, 355, 989999, 114
Offset: 0
Examples
| 3 3 4 | a(10) = 334 because det | 4 3 3 | = 10 | 3 4 3 | . and 334 is the least number to have this property. . | 4 6 9 9 6 | | 6 4 6 9 9 | a(34) = 46996 because det | 9 6 4 6 9 | = 34 | 9 9 6 4 6 | | 6 9 9 6 4 | . and 46996 is the least number to have this property.
Links
- Paolo P. Lava, Table of n, a(n) for n = 0..100
Programs
-
Maple
with(linalg): P:=proc(q) local a,b,c,d,j,k,i,n,t; print(0); for i from 1 to q do for n from 1 to q do d:=ilog10(n)+1; a:=convert(n, base, 10); c:=[]; for k from 1 to nops(a) do c:=[op(c), a[-k]]; od; t:=[op([]), c]; for k from 2 to d do b:=[op([]), c[nops(c)]]; for j from 1 to nops(c)-1 do b:=[op(b), c[j]]; od; c:=b; t:=[op(t), c]; od; if i=det(t) then print(n); break; fi; od; od; end: P(10^7);
-
PARI
md(n) = my(d = if (n, digits(n), [0])); matdet(matrix(#d, #d, i, j, d[1+lift(Mod(j-i, #d))])); a(n) = my(k=0); while(md(k) != n, k++); k; \\ Michel Marcus, Mar 20 2019
Formula
A177894(a(n)) = n when a(n) >= 0. - Rémy Sigrist, Feb 27 2019
Comments