A307887 Least number k such that the determinant of the symmetric Toeplitz matrix formed by its decimal digits is equal to n.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 433, 65, 42, 76, 455, 41, 40, 98, 457, 766, 64, 52, 243, 788, 51, 50, 413, 63, 86, 142, 21024, 3055, 62, 74, 645, 61, 60, 524, 25624, 85, 73, 756, 20031, 514, 412, 72, 23688, 152, 71, 70, 641, 364, 355, 2542, 245, 83, 95, 798, 625
Offset: 0
Examples
| 4 3 3 | a(10) = 433 because det | 3 4 3 | = 10. | 3 3 4 | . | 2 5 6 2 4 | | 5 2 5 6 2 | a(38)= 25624 because det | 6 5 2 5 6 | = 38. | 2 6 5 2 5 | | 4 2 6 5 2 |
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
- Wikipedia, Toeplitz matrix
Crossrefs
Cf. A306593.
Programs
-
Maple
with(numtheory): with(linalg): P:=proc(q) local a,c,i,k,n; print(0); for i from 1 to q do for n from 1 to q do a:=convert(n,base,10): c:=[]: for k from 1 to nops(a) do c:=[op(c), a[-k]]: od: if det(toeplitz(c))=i then print(n); break: fi: od: od: end: P(10^6);
Comments