cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A350954 Maximal determinant of an n X n symmetric Toeplitz matrix using the integers 1 to n.

Original entry on oeis.org

1, 1, 3, 15, 100, 3091, 49375, 1479104, 43413488, 1539619328, 64563673460, 2877312739624, 252631974548628
Offset: 0

Views

Author

Stefano Spezia, Jan 27 2022

Keywords

Examples

			a(3) = 15:
    1    3    2
    3    1    3
    2    3    1
a(4) = 100:
    2    1    4    3
    1    2    1    4
    4    1    2    1
    3    4    1    2
a(5) = 3091:
    3    5    1    2    4
    5    3    5    1    2
    1    5    3    5    1
    2    1    5    3    5
    4    2    1    5    3
		

Crossrefs

Cf. A307887, A350931, A350953 (minimal), A356865 (minimal nonzero absolute value).

Programs

  • Python
    from itertools import permutations
    from sympy import Matrix
    def A350954(n): return max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det() for p in permutations(range(1,n+1))) # Chai Wah Wu, Jan 27 2022

Extensions

a(9) from Alois P. Heinz, Jan 27 2022
a(10)-a(12) from Lucas A. Brown, Sep 01 2022

A350953 Minimal determinant of an n X n symmetric Toeplitz matrix using the integers 1 to n.

Original entry on oeis.org

1, 1, -3, -12, -100, -1749, -47600, -800681, -39453535, -1351201968, -66984136299, -2938096403400, -235011452211680
Offset: 0

Views

Author

Stefano Spezia, Jan 27 2022

Keywords

Examples

			a(3) = -12:
    2    3    1
    3    2    3
    1    3    2
a(4) = -100:
    3    4    1    2
    4    3    4    1
    1    4    3    4
    2    1    4    3
a(5) = -1749:
    5    4    1    3    2
    4    5    4    1    3
    1    4    5    4    1
    3    1    4    5    4
    2    3    1    4    5
		

Crossrefs

Cf. A307887, A350930, A350954 (maximal), A356865 (minimal nonzero absolute value).

Programs

  • Python
    from itertools import permutations
    from sympy import Matrix
    def A350953(n): return min(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det() for p in permutations(range(1,n+1))) # Chai Wah Wu, Jan 27 2022

Extensions

a(9) from Alois P. Heinz, Jan 27 2022
a(10)-a(12) from Lucas A. Brown, Sep 01 2022

A308110 Least number k such that the determinant of the symmetric Hankel matrix formed by its decimal digits is equal to n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 302, 65, 42, 76, 10320, 41, 40, 98, 522, 413, 64, 52, 354, 645, 51, 50, 142, 63, 86, 1534, 13112, 1387, 62, 74, 514, 61, 60, 635, 978, 85, 73, 1431, 502, 2677, 152, 72, 746, 625, 71, 70, 378, 2415, 254, 475, 366, 83, 95, 263, 33442
Offset: 0

Views

Author

Paolo P. Lava, May 13 2019

Keywords

Comments

The first nontrivial values for which a(n) = n are at n = 288 and n = 26825.
When a(n) < n: 168, 182, 232, 234, 252, 272, 280, 300, 304, 320, 324, 325, etc. - Robert G. Wilson v, May 14 2019
Records: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 302, 10320, 13112, 33442, 53242, 55262, 58493, 74959, 1021310, 1124232, 1272626, 1400230, 2034050, 2514162, 3043724, 4986388, 5604351, 106071534, 108162262, 117200232, 128580276, 134314966, 163332550, 165244716, 166811088, 225231732, 229330425, etc. - Robert G. Wilson v, May 15 2019

Examples

			                        | 3 0 2 |
a(10) = 302 because det | 0 2 0 | = 10.
                        | 2 0 3 |
.
                         | 1 0 3 2 0 |
                         | 0 3 2 0 2 |
a(14)= 10320 because det | 3 2 0 2 3 | = 14.
                         | 2 0 2 3 0 |
                         | 0 2 3 0 1 |
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(linalg): P:=proc(q) local c,d,i,k,n,t: print(0);
    for i from 1 to q do for n from 1 to q do c:=convert(n, base, 10): t:=[]:
    for k from 1 to nops(c) do t:=[op(t),0]: od: d:=t: t:=[]:
    for k from 1 to nops(c) do t:=[op(t),d]: t[k,-k]:=1: od:
    if det(evalm(toeplitz(c) &* t))=i then print(n); break: fi:
    od: od: end: P(10^8);
  • Mathematica
    f[n_] := Block[{k = 0}, While[id = IntegerDigits@ k; Det[HankelMatrix[id, Reverse@ id]] != n, k++]; k]; Array[f, 60, 0] (* Robert G. Wilson v, May 14 2019 *)

Extensions

Offset corrected by Robert G. Wilson v, May 14 2019
Showing 1-3 of 3 results.