cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306607 The bottom entry in the difference table of the binary digits of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, -1, 0, 1, 0, 4, 3, -2, -3, 1, 0, 1, 2, -3, -2, 7, 8, 3, 4, -3, -2, -7, -6, 3, 4, -1, 0, 1, 0, 6, 5, -9, -10, -4, -5, 11, 10, 16, 15, 1, 0, 6, 5, -4, -5, 1, 0, -14, -15, -9, -10, 6, 5, 11, 10, -4, -5, 1, 0, 1, 2, -5, -4, 16, 17, 10, 11, -19
Offset: 0

Views

Author

Rémy Sigrist, Feb 28 2019

Keywords

Comments

By convention, a(0) = 0.
For any n > 0: let (b_0, ..., b_w) be the binary representation of n:
- b_w = 1, and for any k = 0..w, 0 <= b_k <= 1,
- n = Sum_{k = 0..w} b_k * 2^k,
- a(n) is the unique value remaining after taking successively the first differences of (b_0, ..., b_w) w times.
From Robert Israel, Mar 07 2019: (Start)
If n is odd then f(A030101(n)) = (-1)^A000523(n)*f(n).
In particular, if n is in A048701 then a(n)=0.
a(n) == 1 (mod A014963(A000523(n))) if n is even,
a(n) == 0 (mod A014963(A000523(n))) if n is odd. (End)

Examples

			For n = 42:
- the binary representation of 42 is "101010",
- the corresponding difference table is:
   0   1   0   1   0   1
     1  -1   1  -1   1
      -2   2  -2   2
         4  -4   4
          -8   8
            16
- hence a(42) = 16.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L;
      L:= convert(n,base,2);
      while nops(L) > 1 do
        L:= L[2..-1]-L[1..-2]
      od;
      op(L)
    end proc:
    map(f, [$0..100]); # Robert Israel, Mar 07 2019
  • Mathematica
    a[n_] := NestWhile[Differences, Reverse[IntegerDigits[n, 2]], Length[#] > 1 &][[1]]; Array[a, 100, 0] (* Amiram Eldar, Mar 08 2019 *)
  • PARI
    a(n) = if (n, my (v=Vecrev(binary(n))); while (#v>1, v=vector(#v-1, k, (v[k+1]-v[k]))); v[1], 0)
    
  • PARI
    a(n) = my(b = binary(n), s = -1); sum(i = 1, #b, s=-s; binomial(#b-1, i-1) * b[i] * s) \\ David A. Corneth, Mar 07 2019

Formula

a(2^k) = 1 for any k >= 0.
a(2^k-1) = 0 for any k > 1.
a(3*2^k) = -k for any k >= 0.
a(n) = Sum_{k=0..A000523(n)} binomial(A000523(n), k)*(-1)^k*A030302(n,k). - David A. Corneth, Mar 07 2019
G.f.: 1/(x-1)*Sum_{k>=0}(x^(2^(k+1))-x^(2^k) + x^(2^k)/(x^(2^k)+1)*Sum_{m>=k+1}(binomial(m,k)*(-1)^(m-k)*(x^(2^(m+1))-x^(2^m)))). - Robert Israel, Mar 07 2019