A306626 Numbers that set a record for occurrences as longest side of a primitive Heronian triangle.
1, 5, 13, 17, 37, 52, 65, 85, 119, 125, 145, 221, 325, 481, 697, 725, 1025, 1105, 1625, 1885, 2465, 2665, 3145, 5525, 6409, 15457, 15725, 26129, 27625, 38425, 40885, 45305, 58565, 67405, 69745, 83317, 128945, 160225, 204425, 226525, 237133, 292825, 348725
Offset: 1
Keywords
Examples
13 is in the sequence since it occurs in a record number of 2 triangles of side lengths {5, 12, 13} and {10, 13, 13}. The side lengths, a(n), and their corresponding record numbers of occurrences, A239246(a(n)), are: n a(n) prime factorization of a(n) occurrences 1 1 - 0 2 5 5 1 3 13 13 2 4 17 17 3 5 37 37 5 6 52 2^2 * 13 6 7 65 5 * 13 8 8 85 5 * 17 9 9 119 7 * 17 10 10 125 5^3 13 11 145 5 * 29 20 12 221 13 * 17 30 13 325 5^2 * 13 37 14 481 13 * 37 42 15 697 17 * 41 50 16 725 5^2 * 29 54 17 1025 5^2 * 41 63 18 1105 5 * 13 * 17 90 19 1625 5^3 * 13 93 20 1885 5 * 13 * 29 106 21 2465 5 * 17 * 29 116 22 2665 5 * 13 * 41 134 23 3145 5 * 17 * 37 178 24 5525 5^2 * 13 * 17 277 25 6409 13 * 17 * 29 373 26 15457 13 * 29 * 41 396 27 15725 5^2 * 17 * 37 463
Links
- Ray Chandler, Table of n, a(n) for n = 1..67 (terms < 6*10^6; first 50 terms from Giovanni Resta)
Programs
-
Mathematica
okQ[x_, y_, z_] := GCD[x, y, z]==1 && If[x + y <= z, False, Module[{s = (x + y + z)/2}, IntegerQ[ Sqrt[s(s-x)(s-y)(s-z)]]] ]; a[n_] := Module[{num = 0}, Do[Do[If[okQ[x, y, n], num++], {x, 1, y}], {y, 1, n}]; num]; amax=-1; s={}; Do[a1=a[n]; If[a1 > amax, AppendTo[s, n]; amax=a1], {n, 1, 100}]; s
Extensions
a(28)-a(43) from Giovanni Resta, Nov 07 2019
Comments