cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A120131 Longest side of primitive Heronian triangles, sorted.

Original entry on oeis.org

5, 6, 8, 13, 13, 15, 15, 17, 17, 17, 20, 20, 21, 21, 24, 25, 25, 25, 26, 26, 28, 29, 29, 30, 30, 30, 35, 35, 36, 37, 37, 37, 37, 37, 39, 39, 39, 39, 40, 40, 40, 41, 41, 41, 41, 42, 44, 44, 45, 48, 48, 50, 50, 51, 51, 51, 51, 52, 52, 52, 52, 52, 52, 53, 53, 53, 53, 55, 55, 56
Offset: 1

Views

Author

Lekraj Beedassy, Jun 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    hQ[a_,b_,c_] := IntegerQ@ Sqrt@ Block[{s = (a+b+c)/2}, s (s-a) (s-b) (s-c)]; Reap[Do[If[ GCD[a, b, c] == 1 && hQ[a, b, c], Sow@ a], {a, 60}, {b, a}, {c, a-b+1, b}]][[2, 1]] (* Giovanni Resta, May 21 2016 *)

A096467 Numbers that can be the longest side of a primitive Heronian triangle.

Original entry on oeis.org

5, 6, 8, 13, 15, 17, 20, 21, 24, 25, 26, 28, 29, 30, 35, 36, 37, 39, 40, 41, 42, 44, 45, 48, 50, 51, 52, 53, 55, 56, 58, 60, 61, 63, 65, 66, 68, 69, 70, 73, 74, 75, 77, 80, 82, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 102, 104, 105, 106, 109, 110, 111, 112, 113
Offset: 1

Views

Author

T. D. Noe, Jun 22 2004

Keywords

Comments

Here a primitive Heronian triangle has integer sides a,b,c with gcd(a,b,c) = 1 and integral area. Note that all primes of the form 4k+1 are in this sequence. It appears that a prime of the form 4k+3 is never the longest side of a Heronian triangle. Cheney's article contains many theorems about these triangles.

Examples

			5 is on this list because the triangle with sides 3, 4, 5 has integral area.
		

Crossrefs

Cf. A083875 (area/6 of primitive Heronian triangles), A096468 (perimeter of primitive Heronian triangles).

Programs

  • Mathematica
    nn=150; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s] && GCD[a, b, c]==1, area2=s(s-a)(s-b)(s-c); If[area2>0 && IntegerQ[Sqrt[area2]], AppendTo[lst, a]]], {a, nn}, {b, a}, {c, b}]; Union[lst]

A120130 First value for longest side common to exactly n primitive Heronian triangles.

Original entry on oeis.org

5, 13, 17, 39, 37, 52, 75, 65, 85, 119, 185, 229, 125, 169, 205, 241, 409, 195, 615, 145, 265, 445, 1111, 340, 555, 507, 663, 485, 765, 221, 493, 377, 715, 865, 689, 425, 325, 1465, 1131, 845, 1015, 481, 3365, 2165, 1037, 949, 901, 1855, 4715, 697, 2516, 925
Offset: 1

Views

Author

Lekraj Beedassy, Jun 10 2006

Keywords

Crossrefs

Extensions

More terms from Giovanni Resta, Nov 07 2019

A322105 Numbers that set a record for occurrences as longest side of a triangle with integer sides and positive integer area.

Original entry on oeis.org

1, 5, 13, 15, 25, 30, 52, 65, 75, 100, 120, 145, 195, 300, 325, 390, 520, 585, 600, 650, 780, 975, 1105, 1300, 1560, 1700, 1950, 2550, 2600, 3315, 3900, 4420, 5100, 5525, 6630, 7800, 8840, 10200, 11050, 13260, 16575, 22100, 26520, 33150, 44200, 53040, 66300, 96135
Offset: 1

Views

Author

Amiram Eldar and Peter Munn, Nov 26 2018

Keywords

Comments

Congruent triangles are identified, that is to say mirror images are not distinguished.
The corresponding numbers of occurrences are 0, 1, 2, 3, 4, 7, 10, ...
A054875(k) gives the number of occurrences for any integer k.

Examples

			13 is in the sequence since it occurs in a record number of 2 triangles of side lengths {5, 12, 13} and {10, 13, 13}.
The side lengths, a(n), and their corresponding record numbers of occurrences, A054875(a(n)), are:
n       a(n)     prime factorization of a(n)  occurrences
1          1     -                               0
2          5     5                               1
3         13     13                              2
4         15     3 * 5                           3
5         25     5^2                             4
6         30     2 * 3 * 5                       7
7         52     2^2 * 13                       10
8         65     5 * 13                         11
9         75     3 * 5^2                        13
10       100     2^2 * 5^2                      15
11       120     2^3 * 3 * 5                    22
12       145     5 * 29                         23
13       195     3 * 5 * 13                     35
14       300     2^2 * 3 * 5^2                  41
15       325     5^2 * 13                       51
16       390     2 * 3 * 5 * 13                 57
17       520     2^3 * 5 * 13                   63
18       585     3^2 * 5 * 13                   64
19       600     2^3 * 3 * 5^2                  72
20       650     2 * 5^2 * 13                   82
21       780     2^2 * 3 * 5 * 13               94
22       975     3 * 5^2 * 13                  135
23      1105     5 * 13 * 17                   143
24      1300     2^2 * 5^2 * 13                158
25      1560     2^3 * 3 * 5 * 13              171
26      1700     2^2 * 5^2 * 17                182
27      1950     2 * 3 * 5^2 * 13              210
28      2550     2 * 3 * 5^2 * 17              216
29      2600     2^3 * 5^2 * 13                251
30      3315     3 * 5 * 13 * 17               333
31      3900     2^2 * 3 * 5^2 * 13            367
32      4420     2^2 * 5 * 13 * 17             373
33      5100     2^2 * 3 * 5^2 * 17            406
34      5525     5^2 * 13 * 17                 496
35      6630     2 * 3 * 5 * 13 * 17           525
36      7800     2^3 * 3 * 5^2 * 13            605
37      8840     2^3 * 5 * 13 * 17             610
38     10200     2^3 * 3 * 5^2 * 17            660
39     11050     2 * 5^2 * 13 * 17             735
40     13260     2^2 * 3 * 5 * 13 * 17         897
41     16575     3 * 5^2 * 13 * 17            1132
42     22100     2^2 * 5^2 * 13 * 17          1276
		

Crossrefs

Programs

  • Mathematica
    okQ[x_, y_, z_] := If[x + y <= z, False, Module[{s = (x + y + z)/2}, IntegerQ[ Sqrt[s(s-x)(s-y)(s-z)]]] ]; a[n_] := Module[{num = 0}, Do[Do[If[okQ[x, y, n], num++], {x, 1, y}], {y, 1, n}]; num]; amax=-1; s={}; Do[a1=a[n]; If[a1 > amax, AppendTo[s, n]; amax=a1],{n,1,100}]; s

Extensions

a(43)-a(48) from Giovanni Resta, Nov 03 2019
Showing 1-4 of 4 results.