A306626
Numbers that set a record for occurrences as longest side of a primitive Heronian triangle.
Original entry on oeis.org
1, 5, 13, 17, 37, 52, 65, 85, 119, 125, 145, 221, 325, 481, 697, 725, 1025, 1105, 1625, 1885, 2465, 2665, 3145, 5525, 6409, 15457, 15725, 26129, 27625, 38425, 40885, 45305, 58565, 67405, 69745, 83317, 128945, 160225, 204425, 226525, 237133, 292825, 348725
Offset: 1
13 is in the sequence since it occurs in a record number of 2 triangles of side lengths {5, 12, 13} and {10, 13, 13}.
The side lengths, a(n), and their corresponding record numbers of occurrences, A239246(a(n)), are:
n a(n) prime factorization of a(n) occurrences
1 1 - 0
2 5 5 1
3 13 13 2
4 17 17 3
5 37 37 5
6 52 2^2 * 13 6
7 65 5 * 13 8
8 85 5 * 17 9
9 119 7 * 17 10
10 125 5^3 13
11 145 5 * 29 20
12 221 13 * 17 30
13 325 5^2 * 13 37
14 481 13 * 37 42
15 697 17 * 41 50
16 725 5^2 * 29 54
17 1025 5^2 * 41 63
18 1105 5 * 13 * 17 90
19 1625 5^3 * 13 93
20 1885 5 * 13 * 29 106
21 2465 5 * 17 * 29 116
22 2665 5 * 13 * 41 134
23 3145 5 * 17 * 37 178
24 5525 5^2 * 13 * 17 277
25 6409 13 * 17 * 29 373
26 15457 13 * 29 * 41 396
27 15725 5^2 * 17 * 37 463
-
okQ[x_, y_, z_] := GCD[x, y, z]==1 && If[x + y <= z, False, Module[{s = (x + y + z)/2}, IntegerQ[ Sqrt[s(s-x)(s-y)(s-z)]]] ]; a[n_] := Module[{num = 0}, Do[Do[If[okQ[x, y, n], num++], {x, 1, y}], {y, 1, n}]; num]; amax=-1; s={}; Do[a1=a[n]; If[a1 > amax, AppendTo[s, n]; amax=a1], {n, 1, 100}]; s
A322105
Numbers that set a record for occurrences as longest side of a triangle with integer sides and positive integer area.
Original entry on oeis.org
1, 5, 13, 15, 25, 30, 52, 65, 75, 100, 120, 145, 195, 300, 325, 390, 520, 585, 600, 650, 780, 975, 1105, 1300, 1560, 1700, 1950, 2550, 2600, 3315, 3900, 4420, 5100, 5525, 6630, 7800, 8840, 10200, 11050, 13260, 16575, 22100, 26520, 33150, 44200, 53040, 66300, 96135
Offset: 1
13 is in the sequence since it occurs in a record number of 2 triangles of side lengths {5, 12, 13} and {10, 13, 13}.
The side lengths, a(n), and their corresponding record numbers of occurrences, A054875(a(n)), are:
n a(n) prime factorization of a(n) occurrences
1 1 - 0
2 5 5 1
3 13 13 2
4 15 3 * 5 3
5 25 5^2 4
6 30 2 * 3 * 5 7
7 52 2^2 * 13 10
8 65 5 * 13 11
9 75 3 * 5^2 13
10 100 2^2 * 5^2 15
11 120 2^3 * 3 * 5 22
12 145 5 * 29 23
13 195 3 * 5 * 13 35
14 300 2^2 * 3 * 5^2 41
15 325 5^2 * 13 51
16 390 2 * 3 * 5 * 13 57
17 520 2^3 * 5 * 13 63
18 585 3^2 * 5 * 13 64
19 600 2^3 * 3 * 5^2 72
20 650 2 * 5^2 * 13 82
21 780 2^2 * 3 * 5 * 13 94
22 975 3 * 5^2 * 13 135
23 1105 5 * 13 * 17 143
24 1300 2^2 * 5^2 * 13 158
25 1560 2^3 * 3 * 5 * 13 171
26 1700 2^2 * 5^2 * 17 182
27 1950 2 * 3 * 5^2 * 13 210
28 2550 2 * 3 * 5^2 * 17 216
29 2600 2^3 * 5^2 * 13 251
30 3315 3 * 5 * 13 * 17 333
31 3900 2^2 * 3 * 5^2 * 13 367
32 4420 2^2 * 5 * 13 * 17 373
33 5100 2^2 * 3 * 5^2 * 17 406
34 5525 5^2 * 13 * 17 496
35 6630 2 * 3 * 5 * 13 * 17 525
36 7800 2^3 * 3 * 5^2 * 13 605
37 8840 2^3 * 5 * 13 * 17 610
38 10200 2^3 * 3 * 5^2 * 17 660
39 11050 2 * 5^2 * 13 * 17 735
40 13260 2^2 * 3 * 5 * 13 * 17 897
41 16575 3 * 5^2 * 13 * 17 1132
42 22100 2^2 * 5^2 * 13 * 17 1276
-
okQ[x_, y_, z_] := If[x + y <= z, False, Module[{s = (x + y + z)/2}, IntegerQ[ Sqrt[s(s-x)(s-y)(s-z)]]] ]; a[n_] := Module[{num = 0}, Do[Do[If[okQ[x, y, n], num++], {x, 1, y}], {y, 1, n}]; num]; amax=-1; s={}; Do[a1=a[n]; If[a1 > amax, AppendTo[s, n]; amax=a1],{n,1,100}]; s
Showing 1-2 of 2 results.
Comments