A306638 a(n) is the norm of the fundamental unit of binary quadratic forms with discriminant D = A079896(n).
-1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1
Offset: 1
Keywords
Examples
Fundamental units and their norms for the first 15 discriminants in the form (X + Y*sqrt(D))/2 (N = (X^2 - D*Y^2)/4 are the corresponding norms) are: D | X | Y | N 5 | 1 | 1 | -1 8 | 2 | 1 | -1 12 | 4 | 1 | 1 13 | 3 | 1 | -1 17 | 8 | 2 | -1 20 | 4 | 1 | -1 21 | 5 | 1 | 1 24 | 10 | 2 | 1 28 | 16 | 3 | 1 29 | 5 | 1 | -1 32 | 6 | 1 | 1 33 | 46 | 8 | 1 37 | 12 | 2 | -1 40 | 6 | 1 | -1 41 | 64 | 10 | -1
References
- D. A. Buell, Binary Quadratic Forms, Springer, 1989, Sections 3.2 and 3.3, pp. 31-48.
Links
- Robin Visser, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Julia
using Nemo function b(D) for j in 1:10000 issquare(D*j^2 - 4) && return -1 issquare(D*j^2 + 4) && return 1 end 0 end F = findall(n -> ZZ(n) % 4 <= 1 && !issquare(ZZ(n)), 1:100) map(n -> b(ZZ(n)), F) |> println # Peter Luschny, Mar 08 2019
-
PARI
b(D) = for(n=1, oo, if(issquare(D*n^2-4), return(-1)); if(issquare(D*n^2+4), return(1))) for(n=2, 200, if(n%4 <= 1 && !issquare(n), print1(b(n), ", ")))
Extensions
Offset changed to 1 by Robin Visser, Jun 09 2025
Comments