A306646 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. (k+1-x^k)/(1-x^k-x^(k+1)).
2, 3, 1, 4, 0, 3, 5, 0, 2, 4, 6, 0, 0, 3, 7, 7, 0, 0, 3, 2, 11, 8, 0, 0, 0, 4, 5, 18, 9, 0, 0, 0, 4, 0, 5, 29, 10, 0, 0, 0, 0, 5, 3, 7, 47, 11, 0, 0, 0, 0, 5, 0, 7, 10, 76, 12, 0, 0, 0, 0, 0, 6, 0, 4, 12, 123, 13, 0, 0, 0, 0, 0, 6, 0, 4, 3, 17, 199
Offset: 0
Examples
A(6,1) = 6*Sum_{j=1..6} binomial(j,6-j)/j = 6*(1/3+3/2+1+1/6) = 18. A(6,2) = 6*Sum_{j=1..3} binomial(j,6-2*j)/j = 6*(1/2+1/3) = 5. Square array begins: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, ... 4, 3, 3, 0, 0, 0, 0, 0, 0, 0, ... 7, 2, 4, 4, 0, 0, 0, 0, 0, 0, ... 11, 5, 0, 5, 5, 0, 0, 0, 0, 0, ... 18, 5, 3, 0, 6, 6, 0, 0, 0, 0, ... 29, 7, 7, 0, 0, 7, 7, 0, 0, 0, ... 47, 10, 4, 4, 0, 0, 8, 8, 0, 0, ... 76, 12, 3, 9, 0, 0, 0, 9, 9, 0, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Mathematica
T[0, k_] := k + 1; T[n_, k_] := n *Sum[Binomial[j, n - k*j]/j, {j, 1, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)