A306680
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-1))/((1-x)^k-x^(k+1)).
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 3, 5, 1, 1, 1, 2, 5, 6, 1, 1, 1, 1, 4, 8, 7, 1, 1, 1, 1, 2, 7, 13, 8, 1, 1, 1, 1, 1, 5, 12, 21, 9, 1, 1, 1, 1, 1, 2, 11, 21, 34, 10, 1, 1, 1, 1, 1, 1, 6, 21, 37, 55, 11, 1, 1, 1, 1, 1, 1, 2, 16, 37, 65, 89, 12
Offset: 0
A(4,1) = A306713(4,1) = 5, A(4,2) = A306713(8,2) = 4.
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 2, 1, 1, 1, 1, 1, 1, 1, ...
4, 3, 2, 1, 1, 1, 1, 1, 1, ...
5, 5, 4, 2, 1, 1, 1, 1, 1, ...
6, 8, 7, 5, 2, 1, 1, 1, 1, ...
7, 13, 12, 11, 6, 2, 1, 1, 1, ...
8, 21, 21, 21, 16, 7, 2, 1, 1, ...
9, 34, 37, 37, 36, 22, 8, 2, 1, ...
-
T[n_, k_] := Sum[Binomial[n - j, k*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)
A306713
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/(1-x^k-x^(k+1)).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 1, 8, 1, 0, 0, 0, 1, 2, 13, 1, 0, 0, 0, 1, 0, 2, 21, 1, 0, 0, 0, 0, 1, 1, 3, 34, 1, 0, 0, 0, 0, 1, 0, 2, 4, 55, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 89, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 7, 144, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 9, 233
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, 0, 0, 0, 0, ...
3, 1, 1, 0, 0, 0, 0, 0, 0, ...
5, 1, 1, 1, 0, 0, 0, 0, 0, ...
8, 2, 0, 1, 1, 0, 0, 0, 0, ...
13, 2, 1, 0, 1, 1, 0, 0, 0, ...
21, 3, 2, 0, 0, 1, 1, 0, 0, ...
34, 4, 1, 1, 0, 0, 1, 1, 0, ...
55, 5, 1, 2, 0, 0, 0, 1, 1, ...
-
T[n_, k_] := Sum[Binomial[j, n-k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)
A050443
a(0)=4, a(1)=0, a(2)=0, a(3)=3; thereafter a(n) = a(n-3) + a(n-4).
Original entry on oeis.org
4, 0, 0, 3, 4, 0, 3, 7, 4, 3, 10, 11, 7, 13, 21, 18, 20, 34, 39, 38, 54, 73, 77, 92, 127, 150, 169, 219, 277, 319, 388, 496, 596, 707, 884, 1092, 1303, 1591, 1976, 2395, 2894, 3567, 4371, 5289, 6461, 7938, 9660, 11750, 14399, 17598, 21410, 26149, 31997
Offset: 0
Tony Davie (ad(AT)dcs.st-and.ac.uk), Dec 23 1999
a(11) = 11 because a(7) = 7 and a(8) = 4.
- David Wells, "Prime Numbers, the Most Mysterious Figures in Math", John Wiley & Sons, Inc.; 2005, p. 103.
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Sadjia Abbad and Hacène Belbachir, The r-Fibonacci polynomial and its companion sequences linked with some classical sequences, Integers (2025), Vol. 25, Art. No. A38. See p. 17.
- Mihaly Bencze, Dan Saracino, and Allen Stenger, Solution of Problem 10655: A Recurrence Generating Multiples of Primes, American Mathematical Monthly 107 (2000) 281-282.
- Johann Cigler, Recurrences for certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials, arXiv:2212.02118 [math.NT], 2022.
- Gregory T. Minton, Linear recurrence sequences satisfying congruence conditions, Proc. Amer. Math. Soc. (2014), Vol. 142, No. 7, 2337-2352. MR3195758.
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,1).
-
a:=[4,0,0,3];; for n in [5..60] do a[n]:=a[n-3]+a[n-4]; od; Print(a); # Muniru A Asiru, Mar 09 2019
-
I:=[4,0,0,3]; [n le 4 select I[n] else Self(n-3) +Self(n-4): n in [1..60]]; // G. C. Greubel, Mar 04 2019
-
LinearRecurrence[{0,0,1,1}, {4,0,0,3}, 60] (* G. C. Greubel, Mar 04 2019 *)
-
polsym(x^4-x-1,55) \\ Joerg Arndt, Mar 04 2019
-
((4-x^3)/(1-x^3-x^4)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Mar 04 2019
A087935
Perrin sequence of order 5.
Original entry on oeis.org
5, 0, 0, 0, 4, 5, 0, 0, 4, 9, 5, 0, 4, 13, 14, 5, 4, 17, 27, 19, 9, 21, 44, 46, 28, 30, 65, 90, 74, 58, 95, 155, 164, 132, 153, 250, 319, 296, 285, 403, 569, 615, 581, 688, 972, 1184, 1196, 1269, 1660, 2156, 2380, 2465, 2929, 3816, 4536, 4845, 5394, 6745, 8352, 9381
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Sadjia Abbad and Hacène Belbachir, The r-Fibonacci polynomial and its companion sequences linked with some classical sequences, Integers (2025), Vol. 25, Art. No. A38. See p. 17.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1).
-
a:=[5,0,0,0,4];; for n in [6..60] do a[n]:=a[n-4]+a[n-5]; od; Print(a); # Muniru A Asiru, Mar 06 2019
-
I:=[5,0,0,0,4]; [n le 5 select I[n] else Self(n-4) +Self(n-5): n in [1..60]]; // G. C. Greubel, Mar 06 2019
-
seq(coeff(series((x^4-5)/(x^5+x^4-1),x,n+1), x, n), n = 0 .. 60); # Muniru A Asiru, Mar 06 2019
-
LinearRecurrence[{0,0,0,1,1},{5,0,0,0,4},60] (* Harvey P. Dale, Oct 03 2016 *)
-
my(x='x+O('x^60)); Vec((5-x^4)/(1-x^4-x^5)) \\ G. C. Greubel, Mar 06 2019
-
polsym(x^5-x-1,66) \\ Joerg Arndt, Mar 10 2019
-
((5-x^4)/(1-x^4-x^5)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Mar 06 2019
A087936
Perrin sequence of order 6.
Original entry on oeis.org
6, 0, 0, 0, 0, 5, 6, 0, 0, 0, 5, 11, 6, 0, 0, 5, 16, 17, 6, 0, 5, 21, 33, 23, 6, 5, 26, 54, 56, 29, 11, 31, 80, 110, 85, 40, 42, 111, 190, 195, 125, 82, 153, 301, 385, 320, 207, 235, 454, 686, 705, 527, 442, 689, 1140, 1391, 1232, 969, 1131, 1829, 2531, 2623, 2201, 2100
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Sadjia Abbad and Hacène Belbachir, The r-Fibonacci polynomial and its companion sequences linked with some classical sequences, Integers (2025), Vol. 25, Art. No. A38. See p. 17.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,1).
-
Concatenation([6],List([1..65],n->n*Sum([1..Int(n/5)],k->Binomial(k,n-5*k)/k))); # Muniru A Asiru, Mar 09 2019
-
a:=n->n*add(binomial(k,n-5*k)/k,k=1..floor(n/5)): 6,seq(a(n),n=1..65); # Muniru A Asiru, Mar 09 2019
-
polsym(x^6-x-1,66) \\ Joerg Arndt, Mar 10 2019
A306735
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. ((k+1-x)*(1-x)^(k-1))/((1-x)^k-x^(k+1)).
Original entry on oeis.org
1, 2, 1, 3, 1, 1, 4, 2, 3, 1, 5, 3, 2, 4, 1, 6, 4, 3, 5, 7, 1, 7, 5, 4, 3, 10, 11, 1, 8, 6, 5, 4, 7, 17, 18, 1, 9, 7, 6, 5, 4, 18, 29, 29, 1, 10, 8, 7, 6, 5, 9, 39, 51, 47, 1, 11, 9, 8, 7, 6, 5, 28, 73, 90, 76, 1, 12, 10, 9, 8, 7, 6, 11, 74, 127, 158, 123, 1, 13, 11, 10, 9, 8, 7, 6, 40, 164, 219, 277, 199, 1
Offset: 0
Square array begins:
1, 2, 3, 4, 5, 6, 7, 8, 9, ...
1, 1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 2, 3, 4, 5, 6, 7, 8, ...
1, 4, 5, 3, 4, 5, 6, 7, 8, ...
1, 7, 10, 7, 4, 5, 6, 7, 8, ...
1, 11, 17, 18, 9, 5, 6, 7, 8, ...
1, 18, 29, 39, 28, 11, 6, 7, 8, ...
1, 29, 51, 73, 74, 40, 13, 7, 8, ...
1, 47, 90, 127, 164, 125, 54, 15, 8, ...
A306755
a(n) = a(n-6) + a(n-7) with a(0)=7, a(1)=...=a(5)=0, a(6)=6.
Original entry on oeis.org
7, 0, 0, 0, 0, 0, 6, 7, 0, 0, 0, 0, 6, 13, 7, 0, 0, 0, 6, 19, 20, 7, 0, 0, 6, 25, 39, 27, 7, 0, 6, 31, 64, 66, 34, 7, 6, 37, 95, 130, 100, 41, 13, 43, 132, 225, 230, 141, 54, 56, 175, 357, 455, 371, 195, 110, 231, 532, 812, 826, 566, 305, 341, 763, 1344, 1638, 1392, 871, 646, 1104, 2107
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Johann Cigler, Recurrences for certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials, arXiv:2212.02118 [math.NT], 2022.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1,1).
-
LinearRecurrence[{0, 0, 0, 0, 0, 1, 1}, {7, 0, 0, 0, 0, 0, 6}, 100] (* Amiram Eldar, Jun 21 2021 *)
-
N=66; x='x+O('x^N); Vec((7-x^6)/(1-x^6-x^7))
A306756
a(n) = a(n-7) + a(n-8) with a(0)=8, a(1)=...=a(6)=0, a(7)=7.
Original entry on oeis.org
8, 0, 0, 0, 0, 0, 0, 7, 8, 0, 0, 0, 0, 0, 7, 15, 8, 0, 0, 0, 0, 7, 22, 23, 8, 0, 0, 0, 7, 29, 45, 31, 8, 0, 0, 7, 36, 74, 76, 39, 8, 0, 7, 43, 110, 150, 115, 47, 8, 7, 50, 153, 260, 265, 162, 55, 15, 57, 203, 413, 525, 427, 217, 70, 72, 260, 616, 938, 952, 644, 287, 142
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1,1).
-
LinearRecurrence[{0, 0, 0, 0, 0, 0, 1, 1}, {8, 0, 0, 0, 0, 0, 0, 7}, 100] (* Amiram Eldar, Jun 21 2021 *)
-
N=66; x='x+O('x^N); Vec((8-x^7)/(1-x^7-x^8))
A306757
a(n) = a(n-8) + a(n-9) with a(0)=9, a(1)=...=a(7)=0, a(8)=8.
Original entry on oeis.org
9, 0, 0, 0, 0, 0, 0, 0, 8, 9, 0, 0, 0, 0, 0, 0, 8, 17, 9, 0, 0, 0, 0, 0, 8, 25, 26, 9, 0, 0, 0, 0, 8, 33, 51, 35, 9, 0, 0, 0, 8, 41, 84, 86, 44, 9, 0, 0, 8, 49, 125, 170, 130, 53, 9, 0, 8, 57, 174, 295, 300, 183, 62, 9, 8, 65, 231, 469, 595, 483, 245, 71, 17, 73, 296, 700
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1,1).
-
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1, 1}, {9, 0, 0, 0, 0, 0, 0, 0, 8}, 100] (* Amiram Eldar, Jun 21 2021 *)
-
N=99; x='x+O('x^N); Vec((9-x^8)/(1-x^8-x^9))
A306758
a(n) = a(n-9) + a(n-10) with a(0)=10, a(1)=...=a(8)=0, a(9)=9.
Original entry on oeis.org
10, 0, 0, 0, 0, 0, 0, 0, 0, 9, 10, 0, 0, 0, 0, 0, 0, 0, 9, 19, 10, 0, 0, 0, 0, 0, 0, 9, 28, 29, 10, 0, 0, 0, 0, 0, 9, 37, 57, 39, 10, 0, 0, 0, 0, 9, 46, 94, 96, 49, 10, 0, 0, 0, 9, 55, 140, 190, 145, 59, 10, 0, 0, 9, 64, 195, 330, 335, 204, 69, 10, 0, 9, 73, 259, 525, 665
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1).
-
LinearRecurrence[{0,0,0,0,0,0,0,0,1,1},{10,0,0,0,0,0,0,0,0,9},80] (* Harvey P. Dale, Jan 18 2021 *)
-
N=99; x='x+O('x^N); Vec((10-x^9)/(1-x^9-x^10))
Showing 1-10 of 10 results.
Comments