A005676
a(n) = Sum_{k=0..n} C(n-k,4*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 6, 16, 36, 71, 128, 220, 376, 661, 1211, 2290, 4382, 8347, 15706, 29191, 53824, 99009, 182497, 337745, 627401, 1167937, 2174834, 4046070, 7517368, 13951852, 25880583, 48009456, 89090436, 165392856, 307137901
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. C. Harris, C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,1,4).
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1,1).
-
[&+[Binomial(n-k, 4*k): k in [0..n]]: n in [0..40]]; // Vincenzo Librandi, Sep 08 2017
-
A005676:=(z-1)**3/(-1+4*z-6*z**2+4*z**3-z**4+z**5); # Simon Plouffe in his 1992 dissertation.
-
LinearRecurrence[{4, -6, 4, -1, 1}, {1, 1, 1, 1, 1}, 40] (* or *) CoefficientList[Series[(1 - x)^3 / ((1 - x)^4 - x^5), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 08 2017 *)
A306846
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-1))/((1-x)^k-x^k).
Original entry on oeis.org
1, 1, 2, 1, 1, 4, 1, 1, 2, 8, 1, 1, 1, 4, 16, 1, 1, 1, 2, 8, 32, 1, 1, 1, 1, 5, 16, 64, 1, 1, 1, 1, 2, 11, 32, 128, 1, 1, 1, 1, 1, 6, 22, 64, 256, 1, 1, 1, 1, 1, 2, 16, 43, 128, 512, 1, 1, 1, 1, 1, 1, 7, 36, 85, 256, 1024, 1, 1, 1, 1, 1, 1, 2, 22, 72, 170, 512, 2048
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 1, 1, 1, 1, 1, 1, 1, 1, ...
4, 2, 1, 1, 1, 1, 1, 1, 1, ...
8, 4, 2, 1, 1, 1, 1, 1, 1, ...
16, 8, 5, 2, 1, 1, 1, 1, 1, ...
32, 16, 11, 6, 2, 1, 1, 1, 1, ...
64, 32, 22, 16, 7, 2, 1, 1, 1, ...
128, 64, 43, 36, 22, 8, 2, 1, 1, ...
256, 128, 85, 72, 57, 29, 9, 2, 1, ...
-
T[n_, k_] := Sum[Binomial[n, k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)
A306713
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/(1-x^k-x^(k+1)).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 1, 8, 1, 0, 0, 0, 1, 2, 13, 1, 0, 0, 0, 1, 0, 2, 21, 1, 0, 0, 0, 0, 1, 1, 3, 34, 1, 0, 0, 0, 0, 1, 0, 2, 4, 55, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 89, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 7, 144, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 9, 233
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, 0, 0, 0, 0, ...
3, 1, 1, 0, 0, 0, 0, 0, 0, ...
5, 1, 1, 1, 0, 0, 0, 0, 0, ...
8, 2, 0, 1, 1, 0, 0, 0, 0, ...
13, 2, 1, 0, 1, 1, 0, 0, 0, ...
21, 3, 2, 0, 0, 1, 1, 0, 0, ...
34, 4, 1, 1, 0, 0, 1, 1, 0, ...
55, 5, 1, 2, 0, 0, 0, 1, 1, ...
-
T[n_, k_] := Sum[Binomial[j, n-k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)
A306735
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. ((k+1-x)*(1-x)^(k-1))/((1-x)^k-x^(k+1)).
Original entry on oeis.org
1, 2, 1, 3, 1, 1, 4, 2, 3, 1, 5, 3, 2, 4, 1, 6, 4, 3, 5, 7, 1, 7, 5, 4, 3, 10, 11, 1, 8, 6, 5, 4, 7, 17, 18, 1, 9, 7, 6, 5, 4, 18, 29, 29, 1, 10, 8, 7, 6, 5, 9, 39, 51, 47, 1, 11, 9, 8, 7, 6, 5, 28, 73, 90, 76, 1, 12, 10, 9, 8, 7, 6, 11, 74, 127, 158, 123, 1, 13, 11, 10, 9, 8, 7, 6, 40, 164, 219, 277, 199, 1
Offset: 0
Square array begins:
1, 2, 3, 4, 5, 6, 7, 8, 9, ...
1, 1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 2, 3, 4, 5, 6, 7, 8, ...
1, 4, 5, 3, 4, 5, 6, 7, 8, ...
1, 7, 10, 7, 4, 5, 6, 7, 8, ...
1, 11, 17, 18, 9, 5, 6, 7, 8, ...
1, 18, 29, 39, 28, 11, 6, 7, 8, ...
1, 29, 51, 73, 74, 40, 13, 7, 8, ...
1, 47, 90, 127, 164, 125, 54, 15, 8, ...
A306721
a(n) = Sum_{k=0..n} binomial(k, 7*(n-k)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1717, 3433, 6437, 11456, 19569, 32505, 53449, 89149, 155041, 286825, 564929, 1163317, 2442210, 5117225, 10558381, 21308121, 41973391, 80778601, 152344397, 282855561, 520060249, 953217792, 1753553441, 3256528177, 6127896977, 11694334137
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..3556
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1,1).
-
a[n_] := Sum[Binomial[k, 7*(n-k)], {k, 0, n}]; Array[a, 40, 0] (* Amiram Eldar, Jun 21 2021 *)
-
{a(n) = sum(k=0, n, binomial(k, 7*(n-k)))}
-
N=66; x='x+O('x^N); Vec((1-x)^6/((1-x)^7-x^8))
A306752
a(n) = Sum_{k=0..n} binomial(k, 8*(n-k)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 10, 46, 166, 496, 1288, 3004, 6436, 12871, 24312, 43776, 75736, 126940, 208336, 340120, 564928, 980629, 1817047, 3605252, 7531836, 16146326, 34716826, 73737316, 153430156, 311652271, 617594122, 1195477615, 2266064352, 4221317464
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..3528
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1,1).
-
a[n_] := Sum[Binomial[k, 8*(n-k)], {k, 0, n}]; Array[a, 38, 0] (* Amiram Eldar, Jun 21 2021 *)
-
{a(n) = sum(k=0, n, binomial(k, 8*(n-k)))}
-
N=66; x='x+O('x^N); Vec((1-x)^7/((1-x)^8-x^9))
A306753
a(n) = Sum_{k=0..n} binomial(k, 9*(n-k)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 11, 56, 221, 716, 2003, 5006, 11441, 24311, 48621, 92380, 167980, 294121, 498751, 824506, 1341154, 2177572, 3605251, 6249101, 11593726, 23138117, 48904469, 106653707, 234305936, 510034166, 1089810953, 2275676459, 4637090547
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..3506
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1,1).
-
a[n_] := Sum[Binomial[k, 9*(n-k)], {k, 0, n}]; Array[a, 38, 0] (* Amiram Eldar, Jun 21 2021 *)
-
{a(n) = sum(k=0, n, binomial(k, 9*(n-k)))}
-
N=66; x='x+O('x^N); Vec((1-x)^8/((1-x)^9-x^10))
A348315
a(n) = Sum_{k=0..n} binomial(n^2 - k,n*k).
Original entry on oeis.org
1, 1, 4, 64, 4382, 1357136, 1597653852, 8389021518585, 164828345435877580, 14256525628649472111712, 4602970880920727147946847283, 6484132480933772335644792339409450, 34112054985056318746734374876035089268523
Offset: 0
-
a[n_] := Sum[Binomial[n^2 - k, n*k], {k, 0, n}]; Array[a, 13, 0] (* Amiram Eldar, Oct 12 2021 *)
-
a(n) = sum(k=0, n, binomial(n^2-k, n*k));
-
a(n) = polcoef((1-x)^(n-1)/((1-x)^n-x^(n+1)+x*O(x^n^2)), n^2);
Showing 1-8 of 8 results.
Comments