cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A005676 a(n) = Sum_{k=0..n} C(n-k,4*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 6, 16, 36, 71, 128, 220, 376, 661, 1211, 2290, 4382, 8347, 15706, 29191, 53824, 99009, 182497, 337745, 627401, 1167937, 2174834, 4046070, 7517368, 13951852, 25880583, 48009456, 89090436, 165392856, 307137901
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A306680.

Programs

  • Magma
    [&+[Binomial(n-k, 4*k): k in [0..n]]: n in [0..40]]; // Vincenzo Librandi, Sep 08 2017
  • Maple
    A005676:=(z-1)**3/(-1+4*z-6*z**2+4*z**3-z**4+z**5); # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1, 1}, {1, 1, 1, 1, 1}, 40] (* or *) CoefficientList[Series[(1 - x)^3 / ((1 - x)^4 - x^5), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 08 2017 *)

Formula

From Paul Barry, Jul 23 2004: (Start)
G.f.: (1-3x+3x^2-x^3)/(1-4x+6x^2-4x^3+x^4-x^5) = (1-x)^3/((1-x)^4-x^5).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, 4k).
a(n) = 4a(n-1)-6a(n-2)+4a(n-3)-a(n-4)+a(n-5). (End)

Extensions

More terms from James Sellers, Aug 21 2000

A306846 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-1))/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 1, 1, 2, 8, 1, 1, 1, 4, 16, 1, 1, 1, 2, 8, 32, 1, 1, 1, 1, 5, 16, 64, 1, 1, 1, 1, 2, 11, 32, 128, 1, 1, 1, 1, 1, 6, 22, 64, 256, 1, 1, 1, 1, 1, 2, 16, 43, 128, 512, 1, 1, 1, 1, 1, 1, 7, 36, 85, 256, 1024, 1, 1, 1, 1, 1, 1, 2, 22, 72, 170, 512, 2048
Offset: 0

Views

Author

Seiichi Manyama, Mar 13 2019

Keywords

Examples

			Square array begins:
     1,   1,  1,  1,  1,  1, 1, 1, 1, ...
     2,   1,  1,  1,  1,  1, 1, 1, 1, ...
     4,   2,  1,  1,  1,  1, 1, 1, 1, ...
     8,   4,  2,  1,  1,  1, 1, 1, 1, ...
    16,   8,  5,  2,  1,  1, 1, 1, 1, ...
    32,  16, 11,  6,  2,  1, 1, 1, 1, ...
    64,  32, 22, 16,  7,  2, 1, 1, 1, ...
   128,  64, 43, 36, 22,  8, 2, 1, 1, ...
   256, 128, 85, 72, 57, 29, 9, 2, 1, ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n, k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n,k*j).

A306713 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/(1-x^k-x^(k+1)).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 1, 8, 1, 0, 0, 0, 1, 2, 13, 1, 0, 0, 0, 1, 0, 2, 21, 1, 0, 0, 0, 0, 1, 1, 3, 34, 1, 0, 0, 0, 0, 1, 0, 2, 4, 55, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 89, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 7, 144, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 9, 233
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2019

Keywords

Comments

A(n,k) is the number of compositions of n into parts k and k+1.

Examples

			Square array begins:
    1, 1, 1, 1, 1, 1, 1, 1, 1, ...
    1, 0, 0, 0, 0, 0, 0, 0, 0, ...
    2, 1, 0, 0, 0, 0, 0, 0, 0, ...
    3, 1, 1, 0, 0, 0, 0, 0, 0, ...
    5, 1, 1, 1, 0, 0, 0, 0, 0, ...
    8, 2, 0, 1, 1, 0, 0, 0, 0, ...
   13, 2, 1, 0, 1, 1, 0, 0, 0, ...
   21, 3, 2, 0, 0, 1, 1, 0, 0, ...
   34, 4, 1, 1, 0, 0, 1, 1, 0, ...
   55, 5, 1, 2, 0, 0, 0, 1, 1, ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[j, n-k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(j,n-k*j).

A306735 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. ((k+1-x)*(1-x)^(k-1))/((1-x)^k-x^(k+1)).

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 3, 1, 5, 3, 2, 4, 1, 6, 4, 3, 5, 7, 1, 7, 5, 4, 3, 10, 11, 1, 8, 6, 5, 4, 7, 17, 18, 1, 9, 7, 6, 5, 4, 18, 29, 29, 1, 10, 8, 7, 6, 5, 9, 39, 51, 47, 1, 11, 9, 8, 7, 6, 5, 28, 73, 90, 76, 1, 12, 10, 9, 8, 7, 6, 11, 74, 127, 158, 123, 1, 13, 11, 10, 9, 8, 7, 6, 40, 164, 219, 277, 199, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2019

Keywords

Examples

			Square array begins:
   1,  2,  3,   4,   5,   6,  7,  8, 9, ...
   1,  1,  2,   3,   4,   5,  6,  7, 8, ...
   1,  3,  2,   3,   4,   5,  6,  7, 8, ...
   1,  4,  5,   3,   4,   5,  6,  7, 8, ...
   1,  7, 10,   7,   4,   5,  6,  7, 8, ...
   1, 11, 17,  18,   9,   5,  6,  7, 8, ...
   1, 18, 29,  39,  28,  11,  6,  7, 8, ...
   1, 29, 51,  73,  74,  40, 13,  7, 8, ...
   1, 47, 90, 127, 164, 125, 54, 15, 8, ...
		

Crossrefs

Columns 0-2 give A000012, A000032, A259967.

Formula

A(n,k) = A306646(k*n,k) for k > 0.
A(n,k) = (k+1)*A306680(n,k) - A306680(n-1,k) for n > 0.

A306721 a(n) = Sum_{k=0..n} binomial(k, 7*(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1717, 3433, 6437, 11456, 19569, 32505, 53449, 89149, 155041, 286825, 564929, 1163317, 2442210, 5117225, 10558381, 21308121, 41973391, 80778601, 152344397, 282855561, 520060249, 953217792, 1753553441, 3256528177, 6127896977, 11694334137
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2019

Keywords

Crossrefs

Column 7 of A306680.
Cf. A017857.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[k, 7*(n-k)], {k, 0, n}]; Array[a, 40, 0] (* Amiram Eldar, Jun 21 2021 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(k, 7*(n-k)))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^6/((1-x)^7-x^8))

Formula

G.f.: (1-x)^6/((1-x)^7-x^8).
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7)+a(n-8) for n > 7.
a(n) = A017857(7*n).

A306752 a(n) = Sum_{k=0..n} binomial(k, 8*(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 10, 46, 166, 496, 1288, 3004, 6436, 12871, 24312, 43776, 75736, 126940, 208336, 340120, 564928, 980629, 1817047, 3605252, 7531836, 16146326, 34716826, 73737316, 153430156, 311652271, 617594122, 1195477615, 2266064352, 4221317464
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2019

Keywords

Crossrefs

Column 8 of A306680.
Cf. A017867.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[k, 8*(n-k)], {k, 0, n}]; Array[a, 38, 0] (* Amiram Eldar, Jun 21 2021 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(k, 8*(n-k)))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^7/((1-x)^8-x^9))

Formula

G.f.: (1-x)^7/((1-x)^8 - x^9).
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) + a(n-9) for n > 8.
a(n) = A017867(8*n).

A306753 a(n) = Sum_{k=0..n} binomial(k, 9*(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 11, 56, 221, 716, 2003, 5006, 11441, 24311, 48621, 92380, 167980, 294121, 498751, 824506, 1341154, 2177572, 3605251, 6249101, 11593726, 23138117, 48904469, 106653707, 234305936, 510034166, 1089810953, 2275676459, 4637090547
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2019

Keywords

Crossrefs

Column 9 of A306680.
Cf. A017877.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[k, 9*(n-k)], {k, 0, n}]; Array[a, 38, 0] (* Amiram Eldar, Jun 21 2021 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(k, 9*(n-k)))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^8/((1-x)^9-x^10))

Formula

G.f.: (1-x)^8/((1-x)^9 - x^10).
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) + a(n-10) for n > 9.
a(n) = A017877(9*n).

A348315 a(n) = Sum_{k=0..n} binomial(n^2 - k,n*k).

Original entry on oeis.org

1, 1, 4, 64, 4382, 1357136, 1597653852, 8389021518585, 164828345435877580, 14256525628649472111712, 4602970880920727147946847283, 6484132480933772335644792339409450, 34112054985056318746734374876035089268523
Offset: 0

Views

Author

Seiichi Manyama, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Binomial[n^2 - k, n*k], {k, 0, n}]; Array[a, 13, 0] (* Amiram Eldar, Oct 12 2021 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n^2-k, n*k));
    
  • PARI
    a(n) = polcoef((1-x)^(n-1)/((1-x)^n-x^(n+1)+x*O(x^n^2)), n^2);

Formula

a(n) = A306680(n^2,n) = [x^(n^2)] (1-x)^(n-1)/((1-x)^n - x^(n+1)).
a(n) ~ c * 2^(1/2 - n/2 + n^2) / (sqrt(Pi)*exp(1/8)*n), where c = Sum_{m = -oo..+oo} 1/(2^m * exp(m*(2*m+1))) = 1.77058122254033174512511... if n is even and c = Sum_{m = -oo..+oo} 1/(2^(m + 1/2) * exp((m+1)*(2*m+1))) = 1.81629595919505881855931... if n is odd. - Vaclav Kotesovec, Oct 12 2021
Showing 1-8 of 8 results.