cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A167009 a(n) = Sum_{k=0..n} C(n^2, n*k).

Original entry on oeis.org

1, 2, 8, 170, 16512, 6643782, 11582386286, 79450506979090, 2334899414608412672, 265166261617029717011822, 128442558588779813655233443038, 238431997806538515396060130910954852
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Examples

			The triangle A209330 of coefficients C(n^2, n*k), n>=k>=0, begins:
  1;
  1,       1;
  1,       6,          1;
  1,      84,         84,          1;
  1,    1820,      12870,       1820,          1;
  1,   53130,    3268760,    3268760,      53130,       1;
  1, 1947792, 1251677700, 9075135300, 1251677700, 1947792,     1; ...
in which the row sums form this sequence.
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n^2, n*j): j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
    
  • Mathematica
    Table[Sum[Binomial[n^2,n*k],{k,0,n}],{n,0,15}] (* Harvey P. Dale, Dec 11 2011 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n^2,n*k))
    
  • Sage
    [sum(binomial(n^2, n*j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022

Formula

Ignoring initial term, equals the logarithmic derivative of A167006. - Paul D. Hanna, Nov 18 2009
If n is even then a(n) ~ c * 2^(n^2 + 1/2)/(n*sqrt(Pi)), where c = Sum_{k = -infinity..infinity} exp(-2*k^2) = 1.271341522189... (see A218792). - Vaclav Kotesovec, Nov 05 2012
If n is odd then c = Sum_{k = -infinity..infinity} exp(-2*(k+1/2)^2) = 1.23528676585389... - Vaclav Kotesovec, Nov 06 2012
a(n) = A306846(n^2,n) = [x^(n^2)] (1-x)^(n-1)/((1-x)^n - x^n) for n > 0. - Seiichi Manyama, Oct 11 2021

A307039 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-1))/((1-x)^k+x^k).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, -2, 0, 1, 1, 1, 0, -4, 0, 1, 1, 1, 1, -3, -4, 0, 1, 1, 1, 1, 0, -9, 0, 0, 1, 1, 1, 1, 1, -4, -18, 8, 0, 1, 1, 1, 1, 1, 0, -14, -27, 16, 0, 1, 1, 1, 1, 1, 1, -5, -34, -27, 16, 0, 1, 1, 1, 1, 1, 1, 0, -20, -68, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, -6, -55, -116, 81, -32, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2019

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,    1,   1,   1,  1, ...
   0,  1,   1,    1,    1,   1,   1,  1, ...
   0,  0,   1,    1,    1,   1,   1,  1, ...
   0, -2,   0,    1,    1,   1,   1,  1, ...
   0, -4,  -3,    0,    1,   1,   1,  1, ...
   0,  0, -18,  -14,   -5,   0,   1,  1, ...
   0,  8, -27,  -34,  -20,  -6,   0,  1, ...
   0, 16, -27,  -68,  -55, -27,  -7,  0, ...
   0, 16,   0, -116, -125, -83, -35, -8, ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^j * Binomial[n, k*j], {j, 0, Floor[n/k]}]; Table[T[n-k, k], {n, 0, 13}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} (-1)^j * binomial(n,k*j).

A306915 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 3, 4, 8, 1, 4, 6, 8, 16, 1, 5, 10, 11, 16, 32, 1, 6, 15, 20, 21, 32, 64, 1, 7, 21, 35, 36, 42, 64, 128, 1, 8, 28, 56, 70, 64, 85, 128, 256, 1, 9, 36, 84, 126, 127, 120, 171, 256, 512, 1, 10, 45, 120, 210, 252, 220, 240, 342, 512, 1024
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2019

Keywords

Examples

			Square array begins:
     1,   1,   1,   1,   1,    1,    1,    1, ...
     2,   2,   3,   4,   5,    6,    7,    8, ...
     4,   4,   6,  10,  15,   21,   28,   36, ...
     8,   8,  11,  20,  35,   56,   84,  120, ...
    16,  16,  21,  36,  70,  126,  210,  330, ...
    32,  32,  42,  64, 127,  252,  462,  792, ...
    64,  64,  85, 120, 220,  463,  924, 1716, ...
   128, 128, 171, 240, 385,  804, 1717, 3432, ...
   256, 256, 342, 496, 715, 1365, 3017, 6436, ...
		

Crossrefs

Programs

  • Mathematica
    A[n_, k_] := Sum[Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[A[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 25 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+k-1,k*j+k-1).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i+k-1,k*j+k-1) * binomial(n-i+k-1,k*j+k-1). - Seiichi Manyama, Apr 07 2019

A306847 a(n) = Sum_{k=0..floor(n/6)} binomial(n,6*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 463, 926, 1730, 3095, 5461, 9829, 18565, 37130, 77540, 164921, 349525, 728575, 1486675, 2973350, 5858126, 11450531, 22369621, 43942081, 87087001, 174174002, 350739488, 708653429, 1431655765, 2884834891, 5791193143
Offset: 0

Views

Author

Seiichi Manyama, Mar 13 2019

Keywords

Crossrefs

Column 6 of A306846.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[n, 6*k], {k, 0, Floor[n/6]}]; Array[a, 36, 0] (* Amiram Eldar, Jun 21 2021 *)
  • PARI
    {a(n) = sum(k=0, n\6, binomial(n, 6*k))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^5/((1-x)^6-x^6))

Formula

G.f.: (1 - x)^5/((1 - x)^6 - x^6).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) for n > 5.
a(n) = (4^n + (1 - t)^n + (1 + t)^n + (3 - t)^n + (3 + t)^n)/(6*2^n) for n > 0 and a(0) = 1, where t = i*sqrt(3) and i = sqrt(-1). - Bruno Berselli, Mar 13 2019

A306860 a(n) = Sum_{k=0..floor(n/9)} binomial(n,9*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 11, 56, 221, 716, 2003, 5006, 11441, 24311, 48622, 92398, 168151, 295261, 504736, 850840, 1442101, 2523676, 4686826, 9373652, 20030039, 44612702, 100804436, 226444616, 499685777, 1076832989, 2261792303, 4631710931, 9263421862
Offset: 0

Views

Author

Seiichi Manyama, Mar 14 2019

Keywords

Crossrefs

Column 9 of A306846.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[n, 9*k], {k, 0, Floor[n/9]}]; Array[a, 40, 0] (* Amiram Eldar, Jun 13 2021 *)
  • PARI
    {a(n) = sum(k=0, n\9, binomial(n, 9*k))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^8/((1-x)^9-x^9))

Formula

G.f.: (1 - x)^8/((1 - x)^9 - x^9).
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + 2*a(n-9) for n > 8.

A307078 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-2))/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 3, 1, 2, 7, 1, 2, 4, 15, 1, 2, 3, 8, 31, 1, 2, 3, 5, 16, 63, 1, 2, 3, 4, 10, 32, 127, 1, 2, 3, 4, 6, 21, 64, 255, 1, 2, 3, 4, 5, 12, 43, 128, 511, 1, 2, 3, 4, 5, 7, 28, 86, 256, 1023, 1, 2, 3, 4, 5, 6, 14, 64, 171, 512, 2047, 1, 2, 3, 4, 5, 6, 8, 36, 136, 341, 1024, 4095
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2019

Keywords

Examples

			Square array begins:
     1,   1,   1,   1,  1,  1,  1,  1, 1, ...
     3,   2,   2,   2,  2,  2,  2,  2, 2, ...
     7,   4,   3,   3,  3,  3,  3,  3, 3, ...
    15,   8,   5,   4,  4,  4,  4,  4, 4, ...
    31,  16,  10,   6,  5,  5,  5,  5, 5, ...
    63,  32,  21,  12,  7,  6,  6,  6, 6, ...
   127,  64,  43,  28, 14,  8,  7,  7, 7, ...
   255, 128,  86,  64, 36, 16,  9,  8, 8, ...
   511, 256, 171, 136, 93, 45, 18, 10, 9, ...
		

Crossrefs

Columns 1-6 give A126646, A000079, A024494(n+1), A038504(n+1), A133476(n+1), A119336.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n+1, k*j+1], {j, 0, Floor[n/k]}]; Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+1,k*j+1).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i,k*j) * binomial(n-i,k*j).

A307393 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-4))/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 5, 1, 4, 16, 1, 4, 11, 42, 1, 4, 10, 26, 99, 1, 4, 10, 21, 57, 219, 1, 4, 10, 20, 42, 120, 466, 1, 4, 10, 20, 36, 84, 247, 968, 1, 4, 10, 20, 35, 64, 169, 502, 1981, 1, 4, 10, 20, 35, 57, 120, 340, 1013, 4017, 1, 4, 10, 20, 35, 56, 93, 240, 682, 2036, 8100
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2019

Keywords

Examples

			Square array begins:
     1,   1,   1,   1,   1,   1,   1,   1, ...
     5,   4,   4,   4,   4,   4,   4,   4, ...
    16,  11,  10,  10,  10,  10,  10,  10, ...
    42,  26,  21,  20,  20,  20,  20,  20, ...
    99,  57,  42,  36,  35,  35,  35,  35, ...
   219, 120,  84,  64,  57,  56,  56,  56, ...
   466, 247, 169, 120,  93,  85,  84,  84, ...
   968, 502, 340, 240, 165, 130, 121, 120, ...
		

Crossrefs

Columns 1-5 give A002662(n+3), A125128(n+1), A111927(n+3), A000749(n+3), A139748(n+3).

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n+3, k*j + 3], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+3,k*j+3).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i+1,k*j+1) * binomial(n-i+1,k*j+1).

A306852 a(n) = Sum_{k=0..floor(n/7)} binomial(n,7*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1717, 3434, 6451, 11561, 20129, 34885, 62017, 116281, 232562, 490337, 1062601, 2309385, 4950751, 10381281, 21242341, 42484682, 83411715, 161766061, 312168761, 603861897, 1178135905, 2326683921, 4653367842
Offset: 0

Views

Author

Seiichi Manyama, Mar 14 2019

Keywords

Crossrefs

Column 7 of A306846.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[n,7*k], {k,0,Floor[n/7]}]; Array[a, 36, 0] (* Amiram Eldar, May 25 2021 *)
  • PARI
    {a(n) = sum(k=0, n\7, binomial(n, 7*k))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^6/((1-x)^7-x^7))

Formula

G.f.: (1 - x)^6/((1 - x)^7 - x^7).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + 2*a(n-7) for n > 6.

A306859 a(n) = Sum_{k=0..floor(n/8)} binomial(n,8*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 10, 46, 166, 496, 1288, 3004, 6436, 12872, 24328, 43912, 76552, 130816, 223840, 394384, 735472, 1470944, 3124576, 6874336, 15260896, 33550336, 72274816, 151869376, 311058496, 622116992, 1219254400, 2353246336, 4500697216, 8589869056
Offset: 0

Views

Author

Seiichi Manyama, Mar 14 2019

Keywords

Crossrefs

Column 8 of A306846.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[n,8*k], {k,0,Floor[n/8]}]; Array[a, 37, 0] (* Amiram Eldar, May 25 2021 *)
  • PARI
    {a(n) = sum(k=0, n\8, binomial(n, 8*k))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^7/((1-x)^8-x^8))

Formula

G.f.: (1 - x)^7/((1 - x)^8 - x^8).
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) for n > 7.

A307665 A(n,k) = Sum_{j=0..floor(n/k)} binomial(2*n,k*j+n), square array A(n,k) read by antidiagonals, for n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 3, 1, 2, 11, 1, 2, 7, 42, 1, 2, 6, 26, 163, 1, 2, 6, 21, 99, 638, 1, 2, 6, 20, 78, 382, 2510, 1, 2, 6, 20, 71, 297, 1486, 9908, 1, 2, 6, 20, 70, 262, 1145, 5812, 39203, 1, 2, 6, 20, 70, 253, 990, 4447, 22819, 155382, 1, 2, 6, 20, 70, 252, 936, 3796, 17358, 89846, 616666
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2019

Keywords

Examples

			Square array begins:
      1,    1,    1,    1,    1,    1,    1,    1, ...
      3,    2,    2,    2,    2,    2,    2,    2, ...
     11,    7,    6,    6,    6,    6,    6,    6, ...
     42,   26,   21,   20,   20,   20,   20,   20, ...
    163,   99,   78,   71,   70,   70,   70,   70, ...
    638,  382,  297,  262,  253,  252,  252,  252, ...
   2510, 1486, 1145,  990,  936,  925,  924,  924, ...
   9908, 5812, 4447, 3796, 3523, 3446, 3433, 3432, ...
		

Crossrefs

Columns 1-2 give A032443, A114121.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[2*n, k*j + n], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 13 2021*)
Showing 1-10 of 10 results.