cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306846 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-1))/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 1, 1, 2, 8, 1, 1, 1, 4, 16, 1, 1, 1, 2, 8, 32, 1, 1, 1, 1, 5, 16, 64, 1, 1, 1, 1, 2, 11, 32, 128, 1, 1, 1, 1, 1, 6, 22, 64, 256, 1, 1, 1, 1, 1, 2, 16, 43, 128, 512, 1, 1, 1, 1, 1, 1, 7, 36, 85, 256, 1024, 1, 1, 1, 1, 1, 1, 2, 22, 72, 170, 512, 2048
Offset: 0

Views

Author

Seiichi Manyama, Mar 13 2019

Keywords

Examples

			Square array begins:
     1,   1,  1,  1,  1,  1, 1, 1, 1, ...
     2,   1,  1,  1,  1,  1, 1, 1, 1, ...
     4,   2,  1,  1,  1,  1, 1, 1, 1, ...
     8,   4,  2,  1,  1,  1, 1, 1, 1, ...
    16,   8,  5,  2,  1,  1, 1, 1, 1, ...
    32,  16, 11,  6,  2,  1, 1, 1, 1, ...
    64,  32, 22, 16,  7,  2, 1, 1, 1, ...
   128,  64, 43, 36, 22,  8, 2, 1, 1, ...
   256, 128, 85, 72, 57, 29, 9, 2, 1, ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n, k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n,k*j).

A307044 a(n) = Sum_{k=0..floor(n/8)} (-1)^k*binomial(n,8*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, -8, -44, -164, -494, -1286, -3002, -6434, -12868, -24292, -43604, -74612, -121124, -183140, -245156, -245156, 0, 961376, 3749136, 10814896, 27293176, 63453016, 138975976, 290021896, 580043792, 1114351888, 2054677648, 3619173776
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2019

Keywords

Crossrefs

Column 8 of A307039.
Cf. A306859.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k * Binomial[n,8*k], {k,0,Floor[n/8]}]; Array[a, 36, 0] (* Amiram Eldar, May 25 2021 *)
  • PARI
    {a(n) = sum(k=0, n\8, (-1)^k*binomial(n, 8*k))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^7/((1-x)^8+x^8))

Formula

G.f.: (1 - x)^7/((1 - x)^8 + x^8).
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - 2*a(n-8) for n > 7.
Showing 1-2 of 2 results.