A306914
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k+x^k).
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 0, 0, 1, 5, 10, 9, -4, 0, 1, 6, 15, 20, 9, -8, 0, 1, 7, 21, 35, 34, 0, -8, 0, 1, 8, 28, 56, 70, 48, -27, 0, 0, 1, 9, 36, 84, 126, 125, 48, -81, 16, 0, 1, 10, 45, 120, 210, 252, 200, 0, -162, 32, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 4, 5, 6, 7, 8, ...
0, 2, 6, 10, 15, 21, 28, 36, ...
0, 0, 9, 20, 35, 56, 84, 120, ...
0, -4, 9, 34, 70, 126, 210, 330, ...
0, -8, 0, 48, 125, 252, 462, 792, ...
0, -8, -27, 48, 200, 461, 924, 1716, ...
0, 0, -81, 0, 275, 780, 1715, 3432, ...
0, 16, -162, -164, 275, 1209, 2989, 6434, ...
-
A[n_, k_] := SeriesCoefficient[1/((1-x)^k + x^k), {x, 0, n}];
Table[A[n-k+1, k], {n, 0, 11}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Mar 20 2019 *)
A289306
a(n) = Sum_{k >= 0}(-1)^k*binomial(n,5*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 0, -5, -20, -55, -125, -250, -450, -725, -1000, -1000, 0, 3625, 13125, 34375, 76875, 153750, 278125, 450000, 621875, 621875, 0, -2250000, -8140625, -21312500, -47656250, -95312500, -172421875, -278984375, -385546875, -385546875, 0, 1394921875
Offset: 0
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
- Seiichi Manyama, Table of n, a(n) for n = 0..3000
- John B. Dobson, A matrix variation on Ramus's identity for lacunary sums of binomial coefficients, arXiv preprint arXiv:1610.09361 [math.NT], 2016.
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5).
-
Table[Sum[(-1)^k*Binomial[n, 5 k], {k, 0, n}], {n, 0, 36}] (* or *)
CoefficientList[Series[-((-1 + x)^4/((-1 + x)^5 - x^5)), {x, 0, 36}], x] (* Michael De Vlieger, Jul 04 2017 *)
LinearRecurrence[{5,-10,10,-5},{1,1,1,1,1},40] (* Harvey P. Dale, Dec 23 2018 *)
-
a(n) = sum(k=0, n\5, (-1)^k*binomial(n,5*k)); \\ Michel Marcus, Jul 02 2017
A307079
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-2))/((1-x)^k+x^k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 0, 1, 1, 2, 3, 3, -4, 1, 1, 2, 3, 4, 0, -8, 1, 1, 2, 3, 4, 4, -9, -8, 1, 1, 2, 3, 4, 5, 0, -27, 0, 1, 1, 2, 3, 4, 5, 5, -14, -54, 16, 1, 1, 2, 3, 4, 5, 6, 0, -48, -81, 32, 1, 1, 2, 3, 4, 5, 6, 6, -20, -116, -81, 32, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, 2, 2, ...
1, 2, 3, 3, 3, 3, 3, 3, 3, ...
1, 0, 3, 4, 4, 4, 4, 4, 4, ...
1, -4, 0, 4, 5, 5, 5, 5, 5, ...
1, -8, -9, 0, 5, 6, 6, 6, 6, ...
1, -8, -27, -14, 0, 6, 7, 7, 7, ...
1, 0, -54, -48, -20, 0, 7, 8, 8, ...
1, 16, -81, -116, -75, -27, 0, 8, 9, ...
-
T[n_, k_] := Sum[(-1)^j * Binomial[n+1, k*j+1], {j, 0, Floor[n/k]}]; Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
A307394
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-4))/((1-x)^k+x^k).
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 4, 9, 10, 1, 4, 10, 14, 15, 1, 4, 10, 19, 15, 21, 1, 4, 10, 20, 28, 8, 28, 1, 4, 10, 20, 34, 28, -7, 36, 1, 4, 10, 20, 35, 48, 1, -22, 45, 1, 4, 10, 20, 35, 55, 48, -80, -21, 55, 1, 4, 10, 20, 35, 56, 75, 0, -242, 12, 66, 1, 4, 10, 20, 35, 56, 83, 75, -164, -485, 77, 78
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 4, 4, 4, 4, 4, 4, 4, 4, ...
6, 9, 10, 10, 10, 10, 10, 10, 10, ...
10, 14, 19, 20, 20, 20, 20, 20, 20, ...
15, 15, 28, 34, 35, 35, 35, 35, 35, ...
21, 8, 28, 48, 55, 56, 56, 56, 56, ...
28, -7, 1, 48, 75, 83, 84, 84, 84, ...
36, -22, -80, 0, 75, 110, 119, 120, 120, ...
45, -21, -242, -164, 0, 110, 154, 164, 165, ...
-
T[n_, k_] := Sum[(-1)^j * Binomial[n+3, k*j + 3], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
A307040
a(n) = Sum_{k=0..floor(n/6)} (-1)^k*binomial(n,6*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 0, -6, -27, -83, -209, -461, -922, -1702, -2911, -4549, -6187, -6187, 0, 23238, 87021, 238337, 564719, 1217483, 2434966, 4542526, 7865521, 12403951, 16942381, 16942381, 0, -63239286, -236031147, -644886923, -1525870529, -3287837741, -6575675482
Offset: 0
-
a[n_] := Sum[(-1)^k * Binomial[n,6*k], {k,0,Floor[n/6]}]; Array[a, 37, 0] (* Amiram Eldar, May 25 2021 *)
-
{a(n) = sum(k=0, n\6, (-1)^k*binomial(n, 6*k))}
-
N=66; x='x+O('x^N); Vec((1-x)^5/((1-x)^6+x^6))
A307041
a(n) = Sum_{k=0..floor(n/7)} (-1)^k*binomial(n,7*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 0, -7, -35, -119, -329, -791, -1715, -3430, -6419, -11319, -18767, -28763, -38759, -38759, 0, 149205, 571781, 1613129, 3964051, 8934121, 18874261, 37748522, 71705865, 129080161, 218205281, 339081225, 459957169, 459957169, 0, -1749692735
Offset: 0
-
a[n_] := Sum[(-1)^k * Binomial[n,7*k], {k,0,Floor[n/7]}]; Array[a, 37, 0] (* Amiram Eldar, May 25 2021 *)
-
{a(n) = sum(k=0, n\7, (-1)^k*binomial(n, 7*k))}
-
N=66; x='x+O('x^N); Vec((1-x)^6/((1-x)^7+x^7))
A307044
a(n) = Sum_{k=0..floor(n/8)} (-1)^k*binomial(n,8*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 0, -8, -44, -164, -494, -1286, -3002, -6434, -12868, -24292, -43604, -74612, -121124, -183140, -245156, -245156, 0, 961376, 3749136, 10814896, 27293176, 63453016, 138975976, 290021896, 580043792, 1114351888, 2054677648, 3619173776
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..3000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-2).
-
a[n_] := Sum[(-1)^k * Binomial[n,8*k], {k,0,Floor[n/8]}]; Array[a, 36, 0] (* Amiram Eldar, May 25 2021 *)
-
{a(n) = sum(k=0, n\8, (-1)^k*binomial(n, 8*k))}
-
N=66; x='x+O('x^N); Vec((1-x)^7/((1-x)^8+x^8))
A307045
a(n) = Sum_{k=0..floor(n/9)} (-1)^k*binomial(n,9*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -9, -54, -219, -714, -2001, -5004, -11439, -24309, -48618, -92358, -167769, -292599, -490104, -783540, -1172907, -1562274, -1562274, 0, 6216183, 24581880, 72182016, 186061536, 443185425, 997483653, 2146130559, 4443424371, 8886848742
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..3000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9).
-
a[n_] := Sum[(-1)^k * Binomial[n,9*k], {k,0,Floor[n/9]}]; Array[a, 37, 0] (* Amiram Eldar, May 25 2021 *)
-
{a(n) = sum(k=0, n\9, (-1)^k*binomial(n, 9*k))}
-
N=66; x='x+O('x^N); Vec((1-x)^8/((1-x)^9+x^9))
A307668
A(n,k) = Sum_{j=0..floor(n/k)} (-1)^j*binomial(2*n,k*j+n), square array A(n,k) read by antidiagonals, for n >= 0, k >= 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 2, 5, 10, 1, 2, 6, 14, 35, 1, 2, 6, 19, 43, 126, 1, 2, 6, 20, 62, 142, 462, 1, 2, 6, 20, 69, 207, 494, 1716, 1, 2, 6, 20, 70, 242, 705, 1780, 6435, 1, 2, 6, 20, 70, 251, 858, 2445, 6563, 24310, 1, 2, 6, 20, 70, 252, 912, 3068, 8622, 24566, 92378
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, ...
3, 5, 6, 6, 6, 6, 6, ...
10, 14, 19, 20, 20, 20, 20, ...
35, 43, 62, 69, 70, 70, 70, ...
126, 142, 207, 242, 251, 252, 252, ...
462, 494, 705, 858, 912, 923, 924, ...
1716, 1780, 2445, 3068, 3341, 3418, 3431, ...
6435, 6563, 8622, 11051, 12310, 12750, 12854, ...
-
T[n_, k_] := Sum[(-1)^j*Binomial[2*n, k*j + n], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 13 2021*)
Showing 1-9 of 9 results.
Comments