cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A306914 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k+x^k).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 0, 0, 1, 5, 10, 9, -4, 0, 1, 6, 15, 20, 9, -8, 0, 1, 7, 21, 35, 34, 0, -8, 0, 1, 8, 28, 56, 70, 48, -27, 0, 0, 1, 9, 36, 84, 126, 125, 48, -81, 16, 0, 1, 10, 45, 120, 210, 252, 200, 0, -162, 32, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2019

Keywords

Examples

			Square array begins:
   1,  1,    1,    1,   1,    1,    1,    1, ...
   0,  2,    3,    4,   5,    6,    7,    8, ...
   0,  2,    6,   10,  15,   21,   28,   36, ...
   0,  0,    9,   20,  35,   56,   84,  120, ...
   0, -4,    9,   34,  70,  126,  210,  330, ...
   0, -8,    0,   48, 125,  252,  462,  792, ...
   0, -8,  -27,   48, 200,  461,  924, 1716, ...
   0,  0,  -81,    0, 275,  780, 1715, 3432, ...
   0, 16, -162, -164, 275, 1209, 2989, 6434, ...
		

Crossrefs

Columns 1-9 give A000007, A099087, A057083, A099589(n+3), A289389(n+4), A306940, (-1)^n * A049018(n), A306941, A306942.

Programs

  • Mathematica
    A[n_, k_] := SeriesCoefficient[1/((1-x)^k + x^k), {x, 0, n}];
    Table[A[n-k+1, k], {n, 0, 11}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Mar 20 2019 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} (-1)^j * binomial(n+k-1,k*j+k-1).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} (-1)^j * binomial(i+k-1,k*j+k-1) * binomial(n-i+k-1,k*j+k-1). - Seiichi Manyama, Apr 07 2019

A307393 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-4))/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 5, 1, 4, 16, 1, 4, 11, 42, 1, 4, 10, 26, 99, 1, 4, 10, 21, 57, 219, 1, 4, 10, 20, 42, 120, 466, 1, 4, 10, 20, 36, 84, 247, 968, 1, 4, 10, 20, 35, 64, 169, 502, 1981, 1, 4, 10, 20, 35, 57, 120, 340, 1013, 4017, 1, 4, 10, 20, 35, 56, 93, 240, 682, 2036, 8100
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2019

Keywords

Examples

			Square array begins:
     1,   1,   1,   1,   1,   1,   1,   1, ...
     5,   4,   4,   4,   4,   4,   4,   4, ...
    16,  11,  10,  10,  10,  10,  10,  10, ...
    42,  26,  21,  20,  20,  20,  20,  20, ...
    99,  57,  42,  36,  35,  35,  35,  35, ...
   219, 120,  84,  64,  57,  56,  56,  56, ...
   466, 247, 169, 120,  93,  85,  84,  84, ...
   968, 502, 340, 240, 165, 130, 121, 120, ...
		

Crossrefs

Columns 1-5 give A002662(n+3), A125128(n+1), A111927(n+3), A000749(n+3), A139748(n+3).

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n+3, k*j + 3], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+3,k*j+3).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i+1,k*j+1) * binomial(n-i+1,k*j+1).

A307395 Expansion of 1/((1 - x) * ((1 - x)^3 + x^3)).

Original entry on oeis.org

1, 4, 10, 19, 28, 28, 1, -80, -242, -485, -728, -728, 1, 2188, 6562, 13123, 19684, 19684, 1, -59048, -177146, -354293, -531440, -531440, 1, 1594324, 4782970, 9565939, 14348908, 14348908, 1, -43046720, -129140162, -258280325, -387420488, -387420488, 1, 1162261468
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2019

Keywords

Crossrefs

Column 5 of A307394.
Partial sums of A057083.

Programs

  • Mathematica
    LinearRecurrence[{4, -6, 3}, {1, 4, 10}, 38] (* Amiram Eldar, May 13 2021 *)
  • PARI
    {a(n) = sum(k=0, n\3, (-1)^k*binomial(n+3, 3*k+3))}
    
  • PARI
    N=66; x='x+O('x^N); Vec(1/((1-x)*((1-x)^3+x^3)))

Formula

a(n) = Sum_{k=0..floor(n/3)} (-1)^k*binomial(n+3,3*k+3).
a(n) = 4*a(n-1) - 6*a(n-2) + 3*a(n-3) for n > 2.
a(6*n) = 1.
a(n) = 1 - A057681(n+3). - Yomna Bakr and Greg Dresden, Apr 22 2024

A307668 A(n,k) = Sum_{j=0..floor(n/k)} (-1)^j*binomial(2*n,k*j+n), square array A(n,k) read by antidiagonals, for n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 2, 5, 10, 1, 2, 6, 14, 35, 1, 2, 6, 19, 43, 126, 1, 2, 6, 20, 62, 142, 462, 1, 2, 6, 20, 69, 207, 494, 1716, 1, 2, 6, 20, 70, 242, 705, 1780, 6435, 1, 2, 6, 20, 70, 251, 858, 2445, 6563, 24310, 1, 2, 6, 20, 70, 252, 912, 3068, 8622, 24566, 92378
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2019

Keywords

Examples

			Square array begins:
      1,    1,    1,     1,     1,     1,     1, ...
      1,    2,    2,     2,     2,     2,     2, ...
      3,    5,    6,     6,     6,     6,     6, ...
     10,   14,   19,    20,    20,    20,    20, ...
     35,   43,   62,    69,    70,    70,    70, ...
    126,  142,  207,   242,   251,   252,   252, ...
    462,  494,  705,   858,   912,   923,   924, ...
   1716, 1780, 2445,  3068,  3341,  3418,  3431, ...
   6435, 6563, 8622, 11051, 12310, 12750, 12854, ...
		

Crossrefs

Columns 1-2 give A088218, A005317.

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^j*Binomial[2*n, k*j + n], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 13 2021*)
Showing 1-4 of 4 results.