cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A306914 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k+x^k).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 0, 0, 1, 5, 10, 9, -4, 0, 1, 6, 15, 20, 9, -8, 0, 1, 7, 21, 35, 34, 0, -8, 0, 1, 8, 28, 56, 70, 48, -27, 0, 0, 1, 9, 36, 84, 126, 125, 48, -81, 16, 0, 1, 10, 45, 120, 210, 252, 200, 0, -162, 32, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2019

Keywords

Examples

			Square array begins:
   1,  1,    1,    1,   1,    1,    1,    1, ...
   0,  2,    3,    4,   5,    6,    7,    8, ...
   0,  2,    6,   10,  15,   21,   28,   36, ...
   0,  0,    9,   20,  35,   56,   84,  120, ...
   0, -4,    9,   34,  70,  126,  210,  330, ...
   0, -8,    0,   48, 125,  252,  462,  792, ...
   0, -8,  -27,   48, 200,  461,  924, 1716, ...
   0,  0,  -81,    0, 275,  780, 1715, 3432, ...
   0, 16, -162, -164, 275, 1209, 2989, 6434, ...
		

Crossrefs

Columns 1-9 give A000007, A099087, A057083, A099589(n+3), A289389(n+4), A306940, (-1)^n * A049018(n), A306941, A306942.

Programs

  • Mathematica
    A[n_, k_] := SeriesCoefficient[1/((1-x)^k + x^k), {x, 0, n}];
    Table[A[n-k+1, k], {n, 0, 11}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Mar 20 2019 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} (-1)^j * binomial(n+k-1,k*j+k-1).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} (-1)^j * binomial(i+k-1,k*j+k-1) * binomial(n-i+k-1,k*j+k-1). - Seiichi Manyama, Apr 07 2019

A307394 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-4))/((1-x)^k+x^k).

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 4, 9, 10, 1, 4, 10, 14, 15, 1, 4, 10, 19, 15, 21, 1, 4, 10, 20, 28, 8, 28, 1, 4, 10, 20, 34, 28, -7, 36, 1, 4, 10, 20, 35, 48, 1, -22, 45, 1, 4, 10, 20, 35, 55, 48, -80, -21, 55, 1, 4, 10, 20, 35, 56, 75, 0, -242, 12, 66, 1, 4, 10, 20, 35, 56, 83, 75, -164, -485, 77, 78
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2019

Keywords

Examples

			Square array begins:
    1,   1,    1,    1,  1,   1,   1,   1,   1, ...
    3,   4,    4,    4,  4,   4,   4,   4,   4, ...
    6,   9,   10,   10, 10,  10,  10,  10,  10, ...
   10,  14,   19,   20, 20,  20,  20,  20,  20, ...
   15,  15,   28,   34, 35,  35,  35,  35,  35, ...
   21,   8,   28,   48, 55,  56,  56,  56,  56, ...
   28,  -7,    1,   48, 75,  83,  84,  84,  84, ...
   36, -22,  -80,    0, 75, 110, 119, 120, 120, ...
   45, -21, -242, -164,  0, 110, 154, 164, 165, ...
		

Crossrefs

Columns 1-5 give A000217(n+1), A279230, A307395, A099589(n+3), A289388(n+3).

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^j * Binomial[n+3, k*j + 3], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} (-1)^j * binomial(n+3,k*j+3).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} (-1)^j * binomial(i+1,k*j+1) * binomial(n-i+1,k*j+1).

A307078 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-2))/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 3, 1, 2, 7, 1, 2, 4, 15, 1, 2, 3, 8, 31, 1, 2, 3, 5, 16, 63, 1, 2, 3, 4, 10, 32, 127, 1, 2, 3, 4, 6, 21, 64, 255, 1, 2, 3, 4, 5, 12, 43, 128, 511, 1, 2, 3, 4, 5, 7, 28, 86, 256, 1023, 1, 2, 3, 4, 5, 6, 14, 64, 171, 512, 2047, 1, 2, 3, 4, 5, 6, 8, 36, 136, 341, 1024, 4095
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2019

Keywords

Examples

			Square array begins:
     1,   1,   1,   1,  1,  1,  1,  1, 1, ...
     3,   2,   2,   2,  2,  2,  2,  2, 2, ...
     7,   4,   3,   3,  3,  3,  3,  3, 3, ...
    15,   8,   5,   4,  4,  4,  4,  4, 4, ...
    31,  16,  10,   6,  5,  5,  5,  5, 5, ...
    63,  32,  21,  12,  7,  6,  6,  6, 6, ...
   127,  64,  43,  28, 14,  8,  7,  7, 7, ...
   255, 128,  86,  64, 36, 16,  9,  8, 8, ...
   511, 256, 171, 136, 93, 45, 18, 10, 9, ...
		

Crossrefs

Columns 1-6 give A126646, A000079, A024494(n+1), A038504(n+1), A133476(n+1), A119336.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n+1, k*j+1], {j, 0, Floor[n/k]}]; Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+1,k*j+1).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i,k*j) * binomial(n-i,k*j).

A307089 Expansion of (1 - x)^4/((1 - x)^6 + x^6).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 6, 0, -27, -110, -319, -780, -1702, -3404, -6315, -10864, -17051, -23238, -23238, 0, 87021, 325358, 890077, 2107560, 4542526, 9085052, 16950573, 29354524, 46296905, 63239286, 63239286, 0, -236031147, -880918070, -2406788599, -5694626340
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2019

Keywords

Crossrefs

Column 6 of A307079.
Row sums of triangle A307156.
Cf. A119336.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k * Binomial[n+1, 6*k+1], {k, 0, Floor[n/6]}]; Array[a, 36, 0] (* Amiram Eldar, May 14 2021 *)
  • PARI
    {a(n) = sum(k=0, n\6, (-1)^k*binomial(n+1,6*k+1))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^4/((1-x)^6+x^6))

Formula

a(n) = Sum_{k=0..floor(n/6)} (-1)^k*binomial(n+1,6*k+1).
a(n) = Sum_{i=0..n} Sum_{j=0..n-i} (-1)^j * binomial(i,3*j) * binomial(n-i,3*j).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - 2*a(n-6) for n > 5.
Showing 1-4 of 4 results.