cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A306846 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-1))/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 1, 1, 2, 8, 1, 1, 1, 4, 16, 1, 1, 1, 2, 8, 32, 1, 1, 1, 1, 5, 16, 64, 1, 1, 1, 1, 2, 11, 32, 128, 1, 1, 1, 1, 1, 6, 22, 64, 256, 1, 1, 1, 1, 1, 2, 16, 43, 128, 512, 1, 1, 1, 1, 1, 1, 7, 36, 85, 256, 1024, 1, 1, 1, 1, 1, 1, 2, 22, 72, 170, 512, 2048
Offset: 0

Views

Author

Seiichi Manyama, Mar 13 2019

Keywords

Examples

			Square array begins:
     1,   1,  1,  1,  1,  1, 1, 1, 1, ...
     2,   1,  1,  1,  1,  1, 1, 1, 1, ...
     4,   2,  1,  1,  1,  1, 1, 1, 1, ...
     8,   4,  2,  1,  1,  1, 1, 1, 1, ...
    16,   8,  5,  2,  1,  1, 1, 1, 1, ...
    32,  16, 11,  6,  2,  1, 1, 1, 1, ...
    64,  32, 22, 16,  7,  2, 1, 1, 1, ...
   128,  64, 43, 36, 22,  8, 2, 1, 1, ...
   256, 128, 85, 72, 57, 29, 9, 2, 1, ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n, k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n,k*j).

A119336 Expansion of (1-x)^4/((1-x)^6 - x^6).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 16, 45, 130, 341, 804, 1730, 3460, 6555, 12016, 21845, 40410, 77540, 155080, 320001, 669526, 1398101, 2884776, 5858126, 11716252, 23166783, 45536404, 89478485, 176565486, 350739488, 701478976, 1410132405, 2841788170
Offset: 0

Views

Author

Paul Barry, May 14 2006

Keywords

Comments

Row sums of A119335. Binomial transform of (1+x)/(1-x)^6.
Equals binomial transform of [1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, ...]. - Gary W. Adamson, Mar 14 2009

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^4/((1-x)^6-x^6),{x,0,40}],x] (* or *) LinearRecurrence[{6,-15,20,-15,6},{1,2,3,4,5},40] (* Harvey P. Dale, Dec 25 2015 *)
  • PARI
    {a(n) = sum(k=0, n\6, binomial(n+1, 6*k+1))} \\ Seiichi Manyama, Mar 22 2019

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(k,3j)*C(n-k,3j).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5), with a(0)=1, a(1)=2, a(2)=3, a(3)=4, a(4)=5. - Harvey P. Dale, Dec 25 2015
a(n) = Sum_{k=0..floor(n/6)} binomial(n+1,6*k+1). - Seiichi Manyama, Mar 22 2019

A307040 a(n) = Sum_{k=0..floor(n/6)} (-1)^k*binomial(n,6*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, -6, -27, -83, -209, -461, -922, -1702, -2911, -4549, -6187, -6187, 0, 23238, 87021, 238337, 564719, 1217483, 2434966, 4542526, 7865521, 12403951, 16942381, 16942381, 0, -63239286, -236031147, -644886923, -1525870529, -3287837741, -6575675482
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2019

Keywords

Crossrefs

Column 6 of A307039.
Cf. A306847.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k * Binomial[n,6*k], {k,0,Floor[n/6]}]; Array[a, 37, 0] (* Amiram Eldar, May 25 2021 *)
  • PARI
    {a(n) = sum(k=0, n\6, (-1)^k*binomial(n, 6*k))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^5/((1-x)^6+x^6))

Formula

G.f.: (1 - x)^5/((1 - x)^6 + x^6).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - 2*a(n-6) for n > 5.
Showing 1-3 of 3 results.