A306786 Primes p such that p^2 divides A087935(p).
2, 3, 7, 11, 103, 4441, 41213, 4956803
Offset: 1
Examples
A087935(103) = 8349283 = 103^2 * 787.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
A087935(103) = 8349283 = 103^2 * 787.
A(6,1) = 6*Sum_{j=1..6} binomial(j,6-j)/j = 6*(1/3+3/2+1+1/6) = 18. A(6,2) = 6*Sum_{j=1..3} binomial(j,6-2*j)/j = 6*(1/2+1/3) = 5. Square array begins: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, ... 4, 3, 3, 0, 0, 0, 0, 0, 0, 0, ... 7, 2, 4, 4, 0, 0, 0, 0, 0, 0, ... 11, 5, 0, 5, 5, 0, 0, 0, 0, 0, ... 18, 5, 3, 0, 6, 6, 0, 0, 0, 0, ... 29, 7, 7, 0, 0, 7, 7, 0, 0, 0, ... 47, 10, 4, 4, 0, 0, 8, 8, 0, 0, ... 76, 12, 3, 9, 0, 0, 0, 9, 9, 0, ...
T[0, k_] := k + 1; T[n_, k_] := n *Sum[Binomial[j, n - k*j]/j, {j, 1, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)
a(11) = 11 because a(7) = 7 and a(8) = 4.
a:=[4,0,0,3];; for n in [5..60] do a[n]:=a[n-3]+a[n-4]; od; Print(a); # Muniru A Asiru, Mar 09 2019
I:=[4,0,0,3]; [n le 4 select I[n] else Self(n-3) +Self(n-4): n in [1..60]]; // G. C. Greubel, Mar 04 2019
LinearRecurrence[{0,0,1,1}, {4,0,0,3}, 60] (* G. C. Greubel, Mar 04 2019 *)
polsym(x^4-x-1,55) \\ Joerg Arndt, Mar 04 2019
((4-x^3)/(1-x^3-x^4)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Mar 04 2019
Concatenation([6],List([1..65],n->n*Sum([1..Int(n/5)],k->Binomial(k,n-5*k)/k))); # Muniru A Asiru, Mar 09 2019
a:=n->n*add(binomial(k,n-5*k)/k,k=1..floor(n/5)): 6,seq(a(n),n=1..65); # Muniru A Asiru, Mar 09 2019
polsym(x^6-x-1,66) \\ Joerg Arndt, Mar 10 2019
Comments