A306652 a(n) = Sum_{m=1..n} Sum_{k=1..n} [k divides n]*[n/k divides m]*[k divides m + 4].
1, 2, 2, 4, 2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 4, 10, 2, 4, 2, 8, 4, 4, 2, 12, 2, 4, 2, 8, 2, 8, 2, 14, 4, 4, 4, 8, 2, 4, 4, 12, 2, 8, 2, 8, 4, 4, 2, 20, 2, 4, 4, 8, 2, 4, 4, 12, 4, 4, 2, 16, 2, 4, 4, 14, 4, 8, 2, 8, 4, 8, 2, 12, 2, 4, 4, 8, 4, 8, 2, 20, 2, 4, 2, 16, 4
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- Mats Granvik, Arithmetic properties of a sum related to the first Hardy-Littlewood conjecture
Programs
-
Mathematica
a[n_] := Sum[Sum[If[Mod[n, k] == 0, If[Mod[m, n/k] == 0, 1, 0], 0]*If[Mod[m + 4, k/1] == 0, 1, 0], {k, 1, n}], {m, 1, n}]; a /@Range[85] (* Dirichlet Convolution. *) a[n_] := Sum[If[Mod[n, k] == 0, Sum[If[Mod[4, j] == 0, If[GCD[k, n/k] == j, j, 0], 0], {j, 1, n}], 0], {k, 1, n}]; a /@Range[85] (* GCD sum. *) a[n_] := Sum[If[Mod[4, j] == 0, j*Count[Divisors[n], d_ /; GCD[d, n/d] == j], 0], {j, 1, n}]; a /@Range[85] (* After Jean-François Alcover in A034444. *)
-
PARI
A306652(n) = sum(m=1, n, sumdiv(n, k, !(m%(n/k)) && !((m+4)%k))); \\ Antti Karttunen, Mar 13 2019
Formula
a(n) = Sum_{m=1..n} Sum_{k=1..n} [k divides n]*[n/k divides m]*[k divides m + 4].
a(n) = Sum_{k=1..n}[k divides n]*Sum_{j=1..n}[j divides 4]*[GCD[k, n/k] = j]*j.
Comments