cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306686 Values of n such that 9^n ends in n, or expomorphic numbers relative to "base" 9.

Original entry on oeis.org

9, 89, 289, 5289, 45289, 745289, 2745289, 92745289, 392745289, 7392745289, 97392745289, 597392745289, 7597392745289, 87597392745289, 8087597392745289, 48087597392745289, 748087597392745289, 10748087597392745289, 610748087597392745289, 5610748087597392745289
Offset: 1

Views

Author

Bernard Schott, Mar 05 2019

Keywords

Comments

Definition: For positive integers b (as base) and n, the positive integer (allowing initial zeros) k(n) is expomorphic relative to base b (here 9) if k(n) has exactly n decimal digits and if b^k(n) == k(n) (mod 10^n) or, equivalently, b^k(n) ends in k(n). [See Crux Mathematicorum link.]
For sequences in the OEIS, no term is allowed to begin with a digit 0 (except for the 1-digit number 0 itself). However, in the problem as defined in the Crux Mathematicorum article, leading 0 digits are allowed; under that definition a(n) = k(n) until the first k(n) which begins with digit 0. When k(n) begins with 0, then, a(n) is the next term of the sequence k(n) which doesn't begin with digit 0.
Conjecture: if k(n) is expomorphic relative to "base" b, then, the next one in the sequence, k(n+1), consists of the last n+1 digits of b^k(n).
a(n) is the backward concatenation of A133619(0) through A133619(n-1). So, a(1) = 9, a(2) = 89 and so on, with recognition of the former comments about the OEIS and terms beginning with 0. - Davis Smith, Mar 07 2019

Examples

			9^9 = 387420489 ends in 9, so 9 is a term; 9^89 = .....289 ends in 89, so 89 is another term.
		

Crossrefs

Cf. A064541 (base 2), A183613 (base 3), A288845 (base 4), A306570 (base 5), A290788 (base 6), A321970 (base 7), A289138 (smallest expomorphic number in base n).
Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).
Cf. A133619 (leading digits).

Programs

  • PARI
    tetrmod(b, n, m)=my(t=b); for(i=1, n, if(i>1, t=lift(Mod(b,m)^t), t)); t
    for(n=1, 21,if(tetrmod(9,n,10^n)!=tetrmod(9,n-1,10^(n-1)),print1(tetrmod(9,n,10^(n-1)),", "))) \\ Davis Smith, Mar 09 2019

Extensions

a(8)-a(20) from Davis Smith, Mar 07 2019