A306686 Values of n such that 9^n ends in n, or expomorphic numbers relative to "base" 9.
9, 89, 289, 5289, 45289, 745289, 2745289, 92745289, 392745289, 7392745289, 97392745289, 597392745289, 7597392745289, 87597392745289, 8087597392745289, 48087597392745289, 748087597392745289, 10748087597392745289, 610748087597392745289, 5610748087597392745289
Offset: 1
Examples
9^9 = 387420489 ends in 9, so 9 is a term; 9^89 = .....289 ends in 89, so 89 is another term.
Links
- Davis Smith, Table of n, a(n) for n = 1..944
- Charles W. Trigg, Problem 559, Crux Mathematicorum, page 192, Vol. 7, Jun. 81.
- Emil Vaughan, Problem 226.8 - 999 nines, M500 Magazine of the Open University, number 226, February 2009, page 21; and Tony Forbes, Solution 226.8 - 999 nines, M500 Magazine of the Open University, number 232, February 2010, pages 8-9, calculating a(9) = 392745289.
Crossrefs
Programs
-
PARI
tetrmod(b, n, m)=my(t=b); for(i=1, n, if(i>1, t=lift(Mod(b,m)^t), t)); t for(n=1, 21,if(tetrmod(9,n,10^n)!=tetrmod(9,n-1,10^(n-1)),print1(tetrmod(9,n,10^(n-1)),", "))) \\ Davis Smith, Mar 09 2019
Extensions
a(8)-a(20) from Davis Smith, Mar 07 2019
Comments