cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A133619 Unique sequence of digits a(0), a(1), a(2), ... such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n satisfies 9^A(k) == A(k) (mod 10^k).

Original entry on oeis.org

9, 8, 2, 5, 4, 7, 2, 9, 3, 7, 9, 5, 7, 8, 0, 8, 4, 7, 0, 1, 6, 5, 7, 4, 3, 0, 5, 6, 2, 7, 2, 8, 4, 5, 2, 5, 7, 0, 0, 5, 8, 9, 9, 8, 8, 7, 4, 0, 4, 1, 9, 4, 9, 8, 8, 6, 8, 4, 6, 8, 1, 9, 9, 2, 6, 2, 0, 1, 3, 7, 5, 4, 1, 6, 1, 3, 6, 0, 7, 3, 8, 5, 8, 4, 6, 0, 0, 2, 0, 6, 3, 2, 5, 3, 7, 6, 7, 2, 9, 5, 7, 4, 3, 2, 4
Offset: 0

Views

Author

Daniel Geisler (daniel(AT)danielgeisler.com), Dec 18 2007

Keywords

Comments

10-adic expansion of the iterated exponential 9^^n for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n > 9, 9^^n == 2745289 (mod 10^7).

Examples

			982547293795780847016574305627284525700589988740419498868468199262013754161360...
		

References

  • M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[9, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)

Extensions

More terms from J. Luis A. Yebra, Dec 12 2008
Edited by N. J. A. Sloane, Dec 22 2008
a(68) onward from Robert G. Wilson v, Mar 06 2014

A306570 Values of n such that 5^n ends in n, or expomorphic numbers relative to "base" 5.

Original entry on oeis.org

5, 25, 125, 3125, 203125, 8203125, 408203125, 8408203125, 18408203125, 618408203125, 2618408203125, 52618408203125, 152618408203125, 3152618408203125, 93152618408203125, 493152618408203125, 7493152618408203125, 17493152618408203125, 117493152618408203125, 7117493152618408203125, 87117493152618408203125
Offset: 1

Views

Author

Bernard Schott, Feb 24 2019

Keywords

Comments

Definition: For positive integers b (as base) and n, the positive integer (allowing initial zeros) k(n) is expomorphic relative to base b (here 5) if k(n) has exactly n decimal digits and if b^k(n) == k(n) (mod 10^n) or, equivalently, b^k(n) ends in k(n). [See Crux Mathematicorum link.]
For sequences in the OEIS, no term is allowed to begin with a digit 0 (except for the 1-digit number 0 itself). However, in the problem as defined in the Crux Mathematicorum article, leading 0 digits are allowed; under that definition a(n) = k(n) until the first k(n) which begins with digit 0. When k(n) begins with 0, then, a(n) is the next term of the sequence k(n) which doesn't begin with digit 0.
Under that definition, the term after a(4) = 3125 is not "03125" but a(5) = 203125. [Comments from Jon E. Schoenfield in A288845 and discussion with Rémy Sigrist]
Conjecture: if k(n) is expomorphic relative to "base" b, then, the next one in the sequence, k(n+1), consists of the last n+1 digits of b^k(n).
a(n) is the backward concatenation of A133615(0) through A133615(n-1). So, a(1) is 5, a(2) is 25, and so on, with recognition of the comments about the OEIS and terms beginning with 0 (for example, when n = 5, A133615(n-1) = 0, so the next nonzero digit is concatenated as well, reducing the amount subtracted from n by 1). - Davis Smith Mar 07 2019

Examples

			5^5 = 25 ends in 5, so 5 is a term; 5^25 = ...125 ends in 25, so 25 is another term.
		

Crossrefs

Cf. A064541 (base 2), A183613 (base 3), A288845 (base 4), A290788 (base 6), A321970 (base 7), A306686 (base 9), A289138 (smallest expomorphic number in base n).
Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).
Cf. A133615 (leading digits).

Programs

  • PARI
    is(n) = my(t=#digits(n)); lift(Mod(5, 10^t)^n)==n
    for(n=1, oo, my(x=n*5); if(lift(Mod(5, 10)^x)==x%10, if(is(x), print1(x, ", ")))) \\ Felix Fröhlich, Feb 24 2019
    
  • PARI
    tetrmod(b,n,m)=my(t=b); for(i=1, n, if(i>1, t=lift(Mod(b,m)^t), t)); t
    for(n=1, 21,if(tetrmod(5,n,10^n)!=tetrmod(5,n-1,10^(n-1)),print1(tetrmod(5,n,10^(n-1)),", "))) \\ Davis Smith, Mar 09 2019

Extensions

a(5)-a(7) from Felix Fröhlich, Feb 24 2019
a(8) from Michel Marcus, Mar 02 2019
a(9)-a(21) from Davis Smith, Mar 07 2019

A290788 Values of n such that 6^n ends in n, or expomorphic numbers in "base" 6.

Original entry on oeis.org

6, 56, 656, 8656, 38656, 238656, 7238656, 47238656, 447238656, 7447238656, 27447238656, 227447238656, 3227447238656
Offset: 1

Views

Author

Bernard Schott, Aug 10 2017

Keywords

Comments

Definition: For positive integers b (as base) and n, the positive integer (allowing initial 0's) a(n) is expomorphic relative to base b (here 6) if a(n) has exactly n decimal digits and if b^a(n) == a(n) (mod 10^n) or, equivalently, b^a(n) ends in a(n). [See Crux Mathematicorum link.]

Examples

			6^6 = 46656 ends in 6, so 6 is a term.
6^56 = ...656 ends in 56, so 56 is another term.
		

Crossrefs

Cf. A064541 (base 2), A183613 (base 3), A288845 (base 4), A289138, A306570 (base 5), A306686 (base 9).
Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).

Programs

  • Mathematica
    Select[Range[10^6], PowerMod[6, #, 10^(1 + Floor@ Log10[#])] == # &] (* Michael De Vlieger, Apr 13 2021 *)
  • PARI
    is(n)=my(m=10^#digits(n)); Mod(6,m)^n==n \\ Charles R Greathouse IV, Aug 10 2017

Extensions

a(6)-a(9) from Charles R Greathouse IV, Aug 10 2017
a(10)-a(13) from Chai Wah Wu, Apr 13 2021

A324017 Square array A(m,n) (m>=1, n>=1) read by antidiagonals: A(m,n) = (2*n - 1)^^m mod (2*n)^m (see Comments for definition of ^^).

Original entry on oeis.org

1, 3, 1, 5, 11, 1, 7, 29, 59, 1, 9, 55, 29, 59, 1, 11, 89, 119, 1109, 827, 1, 13, 131, 289, 3703, 3701, 2875, 1, 15, 181, 563, 5289, 7799, 34805, 15163, 1, 17, 239, 965, 16115, 45289, 138871, 128117, 31547, 1, 19, 305, 1519, 25661, 57587, 745289, 1711735, 687989, 97083, 1
Offset: 1

Views

Author

Davis Smith, Mar 28 2019

Keywords

Comments

Tetration (x^^n) is defined as x^^0 = 1 and x^^n = x^(x^^(n - 1)). Another way to put this is that x^^n = x^x^x^...x with n x's.
Conjecture: For any three integers (greater than 1), m, n, and k, such that (2*n - 1)^^m == k (mod (2*n)^m), (2*n - 1)^k == k (mod (2*n)^m). For example, 5^^2 == 29 (mod 6^2) and 5^29 == 29 (mod 6^2).
Conjecture: For n > 1 and m >= 2, floor(((2*n - 1)^^m)/(2*n)) == 2*(n - 1) (mod 2*n). For example, floor((13^^3)/14) == 12 (mod 14) and floor((15^^4)/16) == 14 (mod 16).
Conjecture: For m > 1, where (2*n - 1)^^m == j (mod (2*n)^(m + 1)), A(m + 1,n) = j. For example, A(6,3) = 563 and A(6,4) = 16115; 11^^3 == 563 (mod 12^3) and 11^^3 == 16115 (mod 12^4).

Examples

			Square array A(m,n) begins:
  \n  1     2      3       4        5          6         7          8 ...
  m\
   1| 1     3      5       7        9         11        13         15 ...
   2| 1    11     29      55       89        131       181        239 ...
   3| 1    59     29     119      289        563       965       1519 ...
   4| 1    59   1109    3703     5289      16115     25661      13807 ...
   5| 1   827   3701    7799    45289      57587    332989     669167 ...
   6| 1  2875  34805  138871   745289    1799411   4635581     669167 ...
   7| 1 15163 128117 1711735  2745289   25687283  49812797   67778031 ...
   8| 1 31547 687989 8003191 92745289  419837171 155226301 3557438959 ...
.
Examples of columns in this array:
A(m,1) = A000012(m - 1).
A(m,5) = A306686(m) with a note about how this sequence repeats terms rather than skipping.
Examples of rows in this array:
A(1,n) = A005408(n - 1).
A(2,n) = A082108(n - 1).
		

Crossrefs

Programs

  • PARI
    tetrmod(b,n,m)=my(t=b);i=0;while(i<=n, i++&&if(i>1, t=lift(Mod(b,m)^t), t)); t
    tetrmatrix(lim)= matrix(lim,lim,x,y,tetrmod((2*y)-1,x,(2*y)^x))

A351410 Numbers m such that the decimal representation of 8^m ends in m.

Original entry on oeis.org

56, 856, 5856, 25856, 225856, 5225856, 95225856, 895225856, 6895225856, 16895225856, 416895225856, 5416895225856, 35416895225856, 7035416895225856, 77035416895225856, 577035416895225856, 1577035416895225856, 21577035416895225856, 521577035416895225856, 1521577035416895225856, 81521577035416895225856
Offset: 1

Views

Author

Bernard Schott, Feb 10 2022

Keywords

Comments

The Crux Mathematicorum link calls these numbers "expomorphic" relative to "base" b, with here b = 8.
Under that definition, the term after a(13) = 35416895225856 is not "035416895225856" or "35416895225856" but a(14) = 7035416895225856.
Conjecture: if k(n) is "expomorphic" relative to "base" b, then the next one in the sequence, k(n+1), consists of the last n+1 digits of b^k(n).
This conjecture is true. See A133618. - David A. Corneth, Feb 10 2022

Examples

			8^56 = 374144419156711147060143317175368453031918731001856, so 56 is a term.
8^856 = ...5856 ends in 856, so 856 is another term.
		

Crossrefs

Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).
Cf. A133618 (leading digits).

Extensions

a(7)-a(8) from Michel Marcus, Feb 10 2022
More terms from David A. Corneth, Feb 10 2022
Showing 1-5 of 5 results.