A306686
Values of n such that 9^n ends in n, or expomorphic numbers relative to "base" 9.
Original entry on oeis.org
9, 89, 289, 5289, 45289, 745289, 2745289, 92745289, 392745289, 7392745289, 97392745289, 597392745289, 7597392745289, 87597392745289, 8087597392745289, 48087597392745289, 748087597392745289, 10748087597392745289, 610748087597392745289, 5610748087597392745289
Offset: 1
9^9 = 387420489 ends in 9, so 9 is a term; 9^89 = .....289 ends in 89, so 89 is another term.
- Davis Smith, Table of n, a(n) for n = 1..944
- Charles W. Trigg, Problem 559, Crux Mathematicorum, page 192, Vol. 7, Jun. 81.
- Emil Vaughan, Problem 226.8 - 999 nines, M500 Magazine of the Open University, number 226, February 2009, page 21; and Tony Forbes, Solution 226.8 - 999 nines, M500 Magazine of the Open University, number 232, February 2010, pages 8-9, calculating a(9) = 392745289.
-
tetrmod(b, n, m)=my(t=b); for(i=1, n, if(i>1, t=lift(Mod(b,m)^t), t)); t
for(n=1, 21,if(tetrmod(9,n,10^n)!=tetrmod(9,n-1,10^(n-1)),print1(tetrmod(9,n,10^(n-1)),", "))) \\ Davis Smith, Mar 09 2019
A306570
Values of n such that 5^n ends in n, or expomorphic numbers relative to "base" 5.
Original entry on oeis.org
5, 25, 125, 3125, 203125, 8203125, 408203125, 8408203125, 18408203125, 618408203125, 2618408203125, 52618408203125, 152618408203125, 3152618408203125, 93152618408203125, 493152618408203125, 7493152618408203125, 17493152618408203125, 117493152618408203125, 7117493152618408203125, 87117493152618408203125
Offset: 1
5^5 = 25 ends in 5, so 5 is a term; 5^25 = ...125 ends in 25, so 25 is another term.
-
is(n) = my(t=#digits(n)); lift(Mod(5, 10^t)^n)==n
for(n=1, oo, my(x=n*5); if(lift(Mod(5, 10)^x)==x%10, if(is(x), print1(x, ", ")))) \\ Felix Fröhlich, Feb 24 2019
-
tetrmod(b,n,m)=my(t=b); for(i=1, n, if(i>1, t=lift(Mod(b,m)^t), t)); t
for(n=1, 21,if(tetrmod(5,n,10^n)!=tetrmod(5,n-1,10^(n-1)),print1(tetrmod(5,n,10^(n-1)),", "))) \\ Davis Smith, Mar 09 2019
A351410
Numbers m such that the decimal representation of 8^m ends in m.
Original entry on oeis.org
56, 856, 5856, 25856, 225856, 5225856, 95225856, 895225856, 6895225856, 16895225856, 416895225856, 5416895225856, 35416895225856, 7035416895225856, 77035416895225856, 577035416895225856, 1577035416895225856, 21577035416895225856, 521577035416895225856, 1521577035416895225856, 81521577035416895225856
Offset: 1
8^56 = 374144419156711147060143317175368453031918731001856, so 56 is a term.
8^856 = ...5856 ends in 856, so 856 is another term.
- Charles W. Trigg, Problem 559, Crux Mathematicorum, pp. 192-194, Vol. 7, Jun. 1981.
Showing 1-3 of 3 results.
Comments