A306687 Triangular array read by rows: The sum of squares of the number of common points in all pairs of lattice paths from (0,0) to (x,y), for 0 <= y <= x (the unnormalized second moment).
1, 4, 26, 9, 92, 474, 16, 240, 1704, 8084, 25, 520, 4879, 29560, 134450, 36, 994, 11928, 89928, 498140, 2208612, 49, 1736, 25956, 238440, 1580810, 8265432, 36024884, 64, 2832, 51648, 568128, 4442768, 27055808, 135873360, 584988840, 81, 4380, 95733, 1242648, 11320595, 79443000, 455434875, 2220096240, 9470766690
Offset: 0
Examples
T(1,1) = 26, because the two lattice paths are DR and RD. (DR,DR) and (RD,RD) have three common points, (DR,RD) and (RD,DR) have two common points, and 2*3^2+2*2^2 = 26. - _Charlie Neder_, Jun 26 2019 The triangle begins: 1, 4, 26, 9, 92, 474, 16, 240, 1704, 8084, 25, 520, 4879, 29560, 134450, ...
Crossrefs
Lower triangle of the square array A324010.
Programs
-
PARI
a(x,y) = (x+y+1)*binomial(x+y+2,x+1)*binomial(x+y,x)-binomial(2*x+2*y+2,2*x+1)/2; for (n=0, 10, for (k=0, n, print1(a(n,k), ", ")); print) \\ Michel Marcus, Apr 08 2019
Formula
T(x,y) = (x+y+1) * binomial(x+y+2,x+1) * binomial(x+y,x) - binomial(2*x+2*y+2,2*x+1) / 2.