cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306705 a(n) = Product_{d|n} d*tau(d), where tau(k) = the number of the divisors of k (A000005).

Original entry on oeis.org

1, 4, 6, 48, 10, 576, 14, 1536, 162, 1600, 22, 497664, 26, 3136, 3600, 122880, 34, 1679616, 38, 2304000, 7056, 7744, 46, 3057647616, 750, 10816, 17496, 6322176, 58, 3317760000, 62, 23592960, 17424, 18496, 19600, 470184984576, 74, 23104, 24336, 23592960000, 82
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Examples

			a(6) = 1*tau(1) * 2*tau(2) * 3*tau(3) * 6*tau(6) = (1*1) * (2*2) * (3*2) * (6*4) = 576.
		

Crossrefs

Cf. A000005, A060640 (Sum_{d|n} d*tau(d)), A007955, A211776.

Programs

  • Magma
    [&*[d * NumberOfDivisors(d): d in Divisors(n)]: n in [1..100]]
    
  • Maple
    f:= proc(n) uses numtheory; local d;
      mul(d*tau(d),d = divisors(n))
    end proc:
    map(f, [$1..100]); # Robert Israel, Mar 24 2019
  • Mathematica
    Table[n^(DivisorSigma[0, n]/2) * Product[DivisorSigma[0, k], {k, Divisors[n]}], {n, 1, 60}] (* Vaclav Kotesovec, Mar 10 2019 *)
  • PARI
    a(n) = my(res = 1); fordiv(n, d, res *= d*numdiv(d)); res; \\ Michel Marcus, Mar 06 2019

Formula

a(p) = 2p for p = primes (A000040).
a(n) = (Product_{d|n} tau(d)) * (Product_{d|n} d) = A211776(n) * A007955(n).
From Robert Israel, Mar 24 2019: (Start)
a(p^k) = (k+1)! * p^(k*(k+1)/2) for primes p.
a(p*q) = 16*p^2*q^2 if p and q are distinct primes. (End)