A306762 Smallest integer k such that Sum_(i=1..k) lambda(i) is divisible by n, where lambda(i) is the Carmichael lambda function.
1, 2, 4, 3, 5, 4, 12, 11, 7, 5, 49, 6, 9, 12, 10, 15, 16, 7, 24, 8, 12, 49, 26, 30, 23, 9, 13, 17, 55, 10, 58, 15, 71, 16, 44, 19, 169, 24, 100, 11, 48, 12, 25, 49, 18, 26, 38, 30, 40, 23, 164, 28, 50, 13, 141, 20, 47, 55, 21, 14, 80, 58, 192, 15, 110, 71, 76
Offset: 1
Examples
a(7) = 12 because Sum_{i=1..12} lambda(i) = 1 + 1 + 2 + 2 + 4 + 2 + 6 + 2 + 6 + 4 + 10 + 2 = 42, and 42/7 = 6.
Crossrefs
Programs
-
Maple
S:= ListTools:-PartialSums(map(numtheory:-lambda, [$1..500])): N:= 100: count:= 0: V:= Vector(N): for n from 1 to 500 while count < N do d:= select(t -> t <= N and V[t] = 0, numtheory:-divisors(S[n])); count:= count + nops(d); V[convert(d,list)]:= n; od: convert(V,list); # Robert Israel, Mar 11 2019
-
Mathematica
a[n_] := (m = 1; While[! IntegerQ[Sum[CarmichaelLambda[k], {k, 1, m}]/n], m++]; m); a /@ Range[80]
-
PARI
lambda(n) = lcm(znstar(n)[2]); a(n) = {my(k=1, s=lambda(k)); while (s % n, k++; s += lambda(k)); k;} \\ Michel Marcus, Mar 09 2019