cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306764 a(n) is a sequence of period 12: repeat [1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6].

Original entry on oeis.org

1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6
Offset: 0

Views

Author

Paul Curtz, Mar 08 2019

Keywords

Comments

a(1) to a(12) is a palindrome.
A089145(n) = A089128(n+3).
A089128(n) = A089145(n+3).
a(1) + a(2) + a(3) + a(4) = a(5) + a(6) + a(7) + a(8) = a(9) + a(10) + a(11) + a(12) = 10.

Examples

			a(0) =  6/6  = 1;
a(1) = 10/10 = 1;
a(2) = 30/5  = 6;
a(3) = 42/21 = 2.
		

Crossrefs

Cf. A064038, A089128 and A089145 (shifted bisections), A306368, A010692.

Programs

  • Mathematica
    PadRight[{},120,{1,1,6,2,1,3,2,2,3,1,2,6}] (* or *) LinearRecurrence[ {0,0,1,0,0,-1,0,0,1},{1,1,6,2,1,3,2,2,3},120] (* Harvey P. Dale, Dec 16 2021 *)
  • PARI
    Vec((1 + x + 6*x^2 + x^3 - 3*x^5 + x^6 + 2*x^7 + 6*x^8) / ((1 - x)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4)) + O(x^80)) \\ Colin Barker, Dec 11 2019

Formula

a(n) = 2*A064038(n+3)/A306368(n).
a(n) = interleave A089128(n-1), A089128(n+1).
a(n) = interleave A089145(n+2), A089145(n-2).
From Colin Barker, Dec 09 2019: (Start)
G.f.: (1 + x + 6*x^2 + x^3 - 3*x^5 + x^6 + 2*x^7 + 6*x^8) / ((1 - x)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4)).
a(n) = a(n-3) - a(n-6) + a(n-9) for n>8.
(End)