A306771 Numbers m such that m = i + j = i * k and phi(m) = phi(i) + phi(j) = phi(i) * phi(k) for some i, j, k, where phi is the Euler totient function A000010.
3, 15, 21, 33, 39, 51, 57, 69, 75, 87, 93, 105, 111, 123, 129, 141, 147, 159, 165, 177, 183, 195, 201, 213, 219, 231, 237, 249, 255, 267, 273, 285, 291, 303, 309, 321, 327, 339, 345, 357, 363, 375, 381, 393, 399, 411, 417, 429, 435, 447, 453, 465, 471, 483, 489
Offset: 1
Examples
33 is in the sequence because: phi(33) = phi(11 + 22) = phi(11) + phi(22) = 10 + 10 = 20, and phi(33) = phi(3 * 11) = phi(3) * phi(11) = 2 * 10 = 20.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Flávio V. Fernandes, A306771(n) equals 3 times A007310(n)
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Maple
with(numtheory): for n from 1 to 500 do: ii:=0: for i from 1 to trunc(n/2) while(ii=0) do: if phi(i)+ phi(n-i)= phi(n) and n/i = floor(n/i) and phi(i)*phi(n/i)=phi(n) then ii:=1:printf(`%d, `,n): else fi: od: od:
-
Mathematica
LinearRecurrence[{1, 1, -1}, {3, 15, 21}, 100] (* Paolo Xausa, Mar 07 2025 *)
-
PARI
isok(m) = {my(phim = eulerphi(m)); for (i=1, m\2, if ((eulerphi(i) + eulerphi(m-i) == phim) && !frac(m/i) && (eulerphi(m/i)*eulerphi(i) == phim), return (1)););} \\ Michel Marcus, Mar 09 2019
Formula
From Chai Wah Wu, Mar 07 2025: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.
G.f.: x*(3*x^2 + 12*x + 3)/((x - 1)^2*(x + 1)). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) (A381671). - Amiram Eldar, Mar 08 2025
Extensions
Incorrect comment deleted by Peter Munn, May 12 2020
Name corrected by Flávio V. Fernandes, Aug 26 2021 and Peter Munn, Sep 03 2021
Comments