cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306810 Inverse binomial transform of the continued fraction expansion of e.

Original entry on oeis.org

2, -1, 2, -4, 7, -8, -2, 41, -134, 296, -485, 512, 82, -2107, 6562, -13852, 21871, -22600, -2186, 83105, -255878, 531440, -826685, 846368, 59050, -2952451, 9034498, -18600436, 28697815, -29229256, -1594322, 98848025, -301327046, 617003000, -947027861, 961376768, 43046722
Offset: 0

Views

Author

Sarah Arpin, Mar 11 2019

Keywords

Examples

			For n = 3, a(3) = -binomial(3,0)*2 + binomial(3,1)*1 - binomial(3,2)*2 + binomial(3,3)*1 = -4.
		

Crossrefs

Continued fraction of e: A003417.
Binomial transform of continued fraction of e: A306809.

Programs

  • Mathematica
    nmax = 50; A003417 = ContinuedFraction[E, nmax+1]; Table[Sum[(-1)^(n + k)*Binomial[n, k]*A003417[[k + 1]], {k, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Apr 23 2020 *)
  • Sage
    def OEISInverse(N, seq):
        BT = [seq[0]]
        k = 1
        while k< N:
            next = 0
            j = 0
            while j <=k:
                next = next + (((-1)^(j+k))*(binomial(k,j))*seq[j])
                j = j+1
            BT.append(next)
            k = k+1
        return BT
    econt = oeis('A003417')
    OEISInverse(50,econt)

Formula

a(n) = Sum{k=0...n}(-1)^(n+k)*binomial(n,k)*b(k), where b(k) is the k-th term of the continued fraction expansion of e.
Conjectures from Colin Barker, Mar 12 2019: (Start)
G.f.: (2 + 13*x + 37*x^2 + 55*x^3 + 42*x^4 + 14*x^5 + 2*x^6) / ((1 + x)*(1 + 3*x + 3*x^2)^2).
a(n) = - 7*a(n-1) - 21*a(n-2) - 33*a(n-3) - 27*a(n-4) - 9*a(n-5) for n>6.
(End)